Renal Physiology - Lectures - ✓ Physiology of Body Fluids PROBLEM SET, RESEARCH ARTICLE - ✓ Structure & Function of the Kidneys - ✓ Renal Clearance & Glomerular Filtration PROBLEM SET - ✓ Regulation of Renal Blood Flow REVIEW ARTICLE - ▼ Transport of Sodium & Chloride TUTORIAL A & B - ✓ Transport of Urea, Glucose, Phosphate, Calcium & Organic Solutes - ✓ Regulation of Potassium Balance - ✓ Regulation of Water Balance - 9. Transport of Acids & Bases - 10. Integration of Salt & Water Balance - 11. Clinical Correlation Dr. Credo - 12. PROBLEM SET REVIEW May 9, 2011 at 9 am - **13.** EXAM REVIEW May 9, 2011 at 10 am - **14.** EXAM IV May 12, 2011 Renal Physiology Lecture 9 Transport of Acids & Bases Chapter 8 Koeppen & Stanton Renal Physiology - Excreting Nonvolatile Acids ~70 mmoles/day CRUCIAL - 2. Bicarbonate Handling - Reclaims ~ ALL Filtered Bicarbonate - Generates NEW Bicarbonate - 3. Hydrogen Ion Regulation - Titrates Filtered Non-HCO₃- Buffers - Titrates Endogenously Produced Ammonia - Acid-Base Disorders | ** | Renal | Failure | Patient | ** | |----|-----------|---------|------------|----| | | I VCI IUI | I and a | , i auciti | | | Tronair andro i attoric | | | | | |-------------------------|------------|--|--|--| | Patient Data | ∆ Normal | | | | | Plasma _{K+} | \uparrow | | | | | P _{Urea} | \uparrow | | | | | ВР | \uparrow | | | | | P _{PO4-} | \uparrow | | | | | Hematocrit | ↓ | | | | | P _{HCO3-} | Ų | | | | | P_{pH} | ↓ | | | | | P _{Ca2+} | ↓ | | | | # REVIEW - Filtration & Reabsorption | | Amount
FILTER/d | Amount
EXCRETE/d | %
REABSORB | |--------------------------|--------------------|---------------------|---------------| | √ Water (L) | 180 | 1.8 | 99.0 | | √ K⁺ (mEq) | 720 | 100 | 86.1 | | √ Ca²+ (mEq) | 540 | 10 | 98.2 | | HCO ₃ - (mEq) | 4,320 | 2 | 99.9 ++ | | √ Cl⁻ (mEq) | 18,000 | 150 | 99.2 | | √ Na+ (g) | 25,500 | 150 | 99.5 | | √ Glucose (mmol) | 800 | 0 | 100 | | √ Urea (g) | 56 | 28 | 50 | # Role of Kidney in Acid Base Balance - Virtually all cellular, tissue, & organ processes sensitive to pH - Acid & alkali ingested diet - Cellular metabolism produces substances impact pH # Hydrogen Ion - [H⁺] low compared to other ions - pH = 7.4 $P[H^+]$ = 40 nM - P_{Na+} 3,000,000 X > P_{H+} - 140 mEq/L vs 40 nEq/L (0.00004mEq/L) - pH = -log [H⁺] # Regulatory Systems – Acid Base Balance of Body Independently control 2 major buffering systems • CO₂ - 2. Regulate [H⁺] body fluids prevent - acidosis - alkalosis # Role of Kidney in Acid Base Balance - Normal pH body fluids - 7.35 7.45 - Alkalosis - H⁺ loss exceeds gain - ↓ arterial plasma [H⁺] pH > 7.45 - Acidosis - H⁺ gain exceeds loss - ↑ arterial plasma [H⁺] pH < 7.35</p> #### **Volatile Acid Production** Volatile Acid $$CO_2$$ + $H_2O \stackrel{\text{(-CA)}}{\Leftrightarrow} H_2CO_3 \stackrel{\text{fast}}{\Leftrightarrow} HCO_3^- + H^+$ 15,000 mmol CO₂ produced/day – oxidation carbohydrates, fats, amino acids Lungs eliminate CO₂ #### **NONvolatile Acid Production** Organic, inorganic acid produced - NOT CO₂ · Phosphoric, sulfuric, lactic acid Metabolism protein, phospholipids, amino acids Acid **NOT** excreted lungs Derived from metabolism, diet, intestinal losses $\frac{\text{NOT}}{\text{CO}_2}$ easily converted #### Renal Mechanisms Nonvolatile acid production = #### 70 mmol/day - Neutralized by HCO₃⁻ in ECF - Kidneys must replenish lost HCO₃⁻ - Plasma = 25 mEq/L HCO₃⁻ - ECF = 14 L - Total HCO₃⁻ buffering 350 mEq H⁺ (25 mEq/L HCO₃⁻ X 14 L) - Deplete HCO₃ in 5 days if <u>not</u> replenished #### Renal Mechanisms - HCO₃- freely filtered glomerulus - 180 L/day X 24 mmol/L = 4,320 mmole/d - 70 mmol/d HCO₃- to buffer nonvolatile acid production - Must reabsorb > 99.9% filtered HCO₃- - Produce 70 mmol/d NEW HCO₃- - Rely on <u>H+ secretion</u> - Usually NO HCO₃- urine # NET Urinary Acid Excretion pg 132 Net urinary acid excretion (NAE) ### **EQUALS** Excreted H⁺ bound phosphate (as HPO₄²⁻, divalent), H₂PO₄⁻, (monovalent), creatinine, uric acid = *titratable acid* ## **PLUS** Excreted H⁺ bound NH₃ (as NH₄⁺) #### **MINUS** Excretion filtered HCO₃- # Renal Handling of H⁺ $$HCO_3^- + H^+ \Leftrightarrow CO_2 + H_2O$$ $$NaHCO_3^- + HCI \Leftrightarrow NaCI + CO_2^- + H_2O$$ - H⁺ load - HCO₃- consumed by H⁺ - CO₂ excreted by lungs - Kidneys <u>regenerate</u> HCO₃⁻ by **making** 70 mmol/d new HCO₃⁻ to neutralize nonvolatile acids # Renal Physiology Lecture 9 - Excreting Nonvolatile Acids - 2. Bicarbonate Handling - 3. Hydrogen Ion Regulation - 4. Acid-Base Disorders #### Reabsorption of Bicarbonate - 1. H⁺ secreted + filtered HCO₃⁻ ⇒ H₂CO₃ - 2. $H_2CO_3 \Rightarrow CO_2 + H_2O$ - carbonic anhydrase apical membrane - 3. $CO_2 + H_2O$ - rapidly reabsorbed - HCO₃- appears peritubular blood - $180 L/d \times 24 mmol/L = 4,320 mmol/d$ HCO_3^- filtered = 4,320 mmol/d H⁺ secretion What happens if you take a drug that blocks CA = acetazolamide (Diamox)? #### **Weak Diuretic** - Inhibits apical, intracellular, basolateral carbonic anhydrases - Inhibits HCO₃- reabsorption - Reduces Na⁺ reabsorption - Slows acid secretion - Excretion of alkaline urine - May cause metabolic acidosis #### **Treatment** glaucoma, epilepsy, fluid retention in CHF, mountain sickness # Titratable Acid = Generation of New Bicarbonate - Secreted H⁺ in lumen + filtered urinary buffers (HPO₄²⁻; divalent phosphate) <u>other than</u> HCO₃⁻ - NEW HCO₃- added plasma - Occurs only after filtered HCO₃ removed lumen - H⁺ excreted as H₂PO₄⁻ (monovalent phosphate) Filtered Phosphate - Primary Urinary Buffers # Ammoniagenesis – Generation of New Bicarbonate - Stimulated by acidosis - PT takes up glutamine & metabolized to NH₄⁺ (ammonium) - NH₄⁺ dissociates to NH₃ + H⁺ - NH₃ diffuses to lumen, H⁺ secreted = NH₄⁺ lumen - HCO₃- moves into peritubular capillaries - Acidify the urine by excreting NH₄⁺ **Addition Of A NEW Bicarbonate To Plasma** # Renal Physiology Lecture 9 - Excreting Nonvolatile Acids - 2. Bicarbonate Handling - 3. Hydrogen Ion Regulation - 4. Acid-Base Disorders #### H⁺ Secretion – Proximal Tubule Fig 38-4AB - Na⁺/H⁺ exchanger = 2/3 (major NHE3) - 2. H^+ ATPase = 1/3 (pump) 80% Filtered HCO₃- Reabsorbed in PT # H+ Secretion - TAL & CD Fig 38-4CD - 1. Na⁺/H⁺ exchanger (major *NHE3*) - 2. H⁺ ATPase (pump) - 3. H⁺/K⁺ ATPase (pump) ~ 20% Filtered HCO₃-Reabsorbed in TAL, DCT, CD ## Hydrogen Ion Secretion - Apical - Na⁺/H⁺ exchanger (major NHE3) all PCT, TAL, DCT - H⁺ ATPase (pump) mainly intercalated cells CD; also PT, TAL, DCT ~ everywhere - 3. H⁺/K⁺ ATPase (exchange pump) CD ## Bicarbonate Reabsorption - Basolateral - 1. Na⁺/HCO₃⁻ cotransporter (1:3, *NBC1*) - 2. Cl⁻/HCO₃⁻ <u>exchanger</u> (anion exchanger, *AE*) #### Secreted H⁺ From Blood to Lumen #### Titrate: - 1. Filtered Bicarbonate - 2. Filtered Phosphate (or other buffers) - 3. Ammonia (secreted + filtered) # Acid/Base Regulation # **Net acid excretion (NAE)** Acidosis $$\uparrow \uparrow$$ NAE = $\uparrow U_{NH_4^+} V + \uparrow U_{TA} V - \downarrow U_{HCO_3^-} V$ Alkalosis $$\downarrow \downarrow$$ NAE = \downarrow U_{NH4}+ V + \downarrow U_{TA} V - \uparrow U_{HCO3}- V # Renal Handling of H+ - Acid load handled by "dividing" 70 mmol/d of carbonic acid (H₂CO₃) - excrete 70 mmol/d H⁺ into urine AND -70 mmol/d NEW HCO $_3$ ⁻ into blood #### **THEREFORE** NEW HCO₃- neutralizes daily load 70 mmol nonvolatile acid Sole Effective Route For Neutralizing Nonvolatile Acids ## Renal Physiology Lecture 9 - Excreting Nonvolatile Acids - 2. Bicarbonate Handling - 3. Hydrogen Ion Regulation - 4. Acid-Base Disorders #### Primary Acid/Base Disturbances #### **Metabolic Acidosis** - 1. Uncontrolled diabetes mellitus - 2. Renal failure - 3. Severe diarrhea - 4. Ingestion of antifreeze #### **Metabolic Alkalosis** - 1. Vomiting - 2. Nasogastric drainage - 3. Antacids ### Primary Acid/Base Disturbances ## **Respiratory Acidosis** - 1. Chronic pulmonary disease - 2. Pulmonary edema - 3. Sedative overdosage - 4. Obstruction of airway ## **Respiratory Alkalosis** - 1. High altitude - 2. Anxiety, pain, fear hyperventilation - 3. Gram-negative sepsis #### Compensatory Responses by Lungs #### Metabolic Acidosis ↓ P_{CO2} by hyperventilation #### Metabolic Alkalosis ↑ P_{CO2} by hypoventilation **Compensation Almost Instantaneous** ## Compensatory Responses by Kidneys #### **Respiratory Acidosis** - î renal H⁺ excretion = î production NEW HCO₃- via NH₄+ excretion - Acute ↑ P_{CO2} ↑ H⁺ secretion - Chronic î P_{CO2} upregulate apical Na⁺H⁺ exchanger, H⁺ pump & basolateral Cl⁻HCO₃⁻ exchanger #### **Respiratory Alkalosis** Opposite occurs + ↑ HCO₃ secretion **Compensation Takes Several DAYS** ## Compensatory Responses by Kidneys #### **Metabolic Acidosis** - — ↑ excretion of titratable acid & NH₄⁺ = ↑ production NEW HCO₃⁻ - Alterations in numbers and activities of acid-base transporters (H⁺, HCO₃⁻ & NH₄⁺) #### **Metabolic Alkalosis** - 1 excretion HCO₃- - Net acid excretion is negative ## **Compensation Takes Several DAYS** ## Role of Kidney in Acid Base Balance - Preservation of HCO₃stores - H⁺ secretion reabsorb virtually ALL filtered HCO₃⁻ - Formation NEW HCO₃- in renal cells, add to blood - Net excretion of H⁺ - Excretion of divalent phosphate - Ammonium excretion # What Did We Learn Today - Kidneys Play an Important Role in Acid Base Balance - Kidneys MUST Excrete Non-Volatile Acids - Reabsorb ALL Filtered HCO₃₋ - 4. Excretion of Fixed H⁺ - H₂PO₄⁻ (titratable acid) - NH₄⁺ - GOAL Net secretion of H⁺ & net reabsorption of NEWLY synthesized HCO₃⁻