Renal Physiology - Lectures

- ✓ Physiology of Body Fluids PROBLEM SET, RESEARCH ARTICLE
- ✓ Structure & Function of the Kidneys
- ✓ Renal Clearance & Glomerular Filtration PROBLEM SET
- ✓ Regulation of Renal Blood Flow REVIEW ARTICLE
- ▼ Transport of Sodium & Chloride TUTORIAL A & B
- ✓ Transport of Urea, Glucose, Phosphate, Calcium & Organic Solutes
- ✓ Regulation of Potassium Balance
- ✓ Regulation of Water Balance
- 9. Transport of Acids & Bases
- 10. Integration of Salt & Water Balance
- 11. Clinical Correlation Dr. Credo
- 12. PROBLEM SET REVIEW May 9, 2011 at 9 am
- **13.** EXAM REVIEW May 9, 2011 at 10 am
- **14.** EXAM IV May 12, 2011

Renal Physiology Lecture 9 Transport of Acids & Bases

Chapter 8 Koeppen & Stanton Renal Physiology

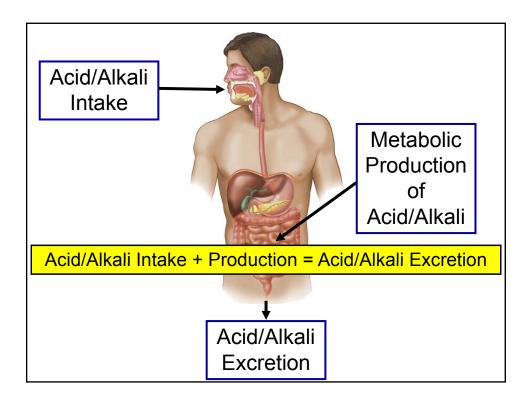
- Excreting Nonvolatile Acids ~70 mmoles/day CRUCIAL
- 2. Bicarbonate Handling
 - Reclaims ~ ALL Filtered Bicarbonate
 - Generates NEW Bicarbonate
- 3. Hydrogen Ion Regulation
 - Titrates Filtered Non-HCO₃- Buffers
 - Titrates Endogenously Produced Ammonia
- Acid-Base Disorders

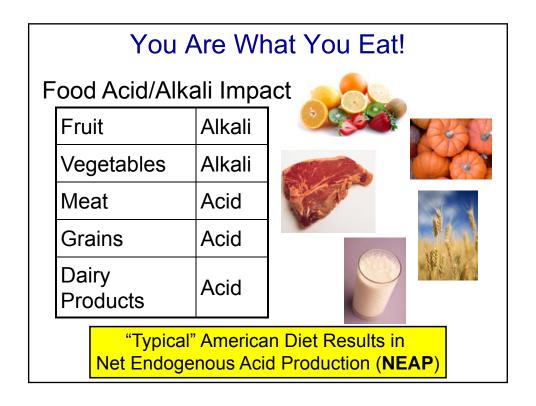
**	Renal	Failure	Patient	**
	I VCI IUI	I and a	, i auciti	

Tronair andro i attoric				
Patient Data	∆ Normal			
Plasma _{K+}	\uparrow			
P _{Urea}	\uparrow			
ВР	\uparrow			
P _{PO4-}	\uparrow			
Hematocrit	↓			
P _{HCO3-}	Ų			
P_{pH}	↓			
P _{Ca2+}	↓			

REVIEW - Filtration & Reabsorption

	Amount FILTER/d	Amount EXCRETE/d	% REABSORB
√ Water (L)	180	1.8	99.0
√ K⁺ (mEq)	720	100	86.1
√ Ca²+ (mEq)	540	10	98.2
HCO ₃ - (mEq)	4,320	2	99.9 ++
√ Cl⁻ (mEq)	18,000	150	99.2
√ Na+ (g)	25,500	150	99.5
√ Glucose (mmol)	800	0	100
√ Urea (g)	56	28	50


Role of Kidney in Acid Base Balance


- Virtually all cellular, tissue, & organ processes sensitive to pH
- Acid & alkali ingested diet
- Cellular metabolism produces substances impact pH

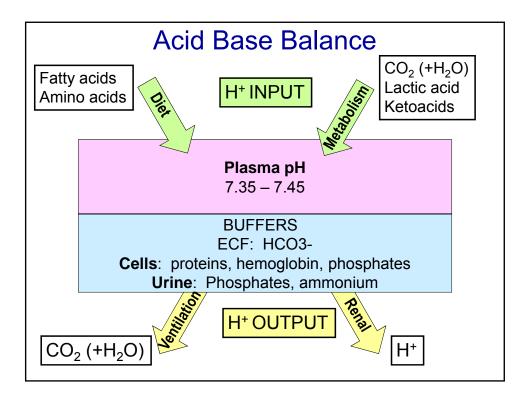
Hydrogen Ion

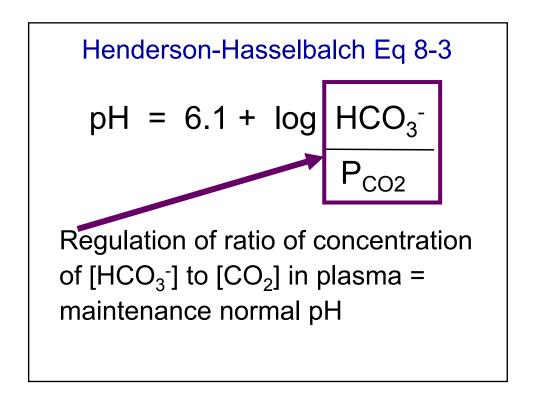
- [H⁺] low compared to other ions
- pH = 7.4 $P[H^+]$ = 40 nM
- P_{Na+} 3,000,000 X > P_{H+}
- 140 mEq/L vs 40 nEq/L (0.00004mEq/L)
- pH = -log [H⁺]

Regulatory Systems – Acid Base Balance of Body

 Independently control 2 major buffering systems

• CO₂


- 2. Regulate [H⁺] body fluids prevent
 - acidosis
 - alkalosis


Role of Kidney in Acid Base Balance

- Normal pH body fluids
 - 7.35 7.45
- Alkalosis
 - H⁺ loss exceeds gain
 - ↓ arterial plasma [H⁺] pH > 7.45
- Acidosis

- H⁺ gain exceeds loss
- ↑ arterial plasma [H⁺] pH < 7.35</p>

Volatile Acid Production

Volatile Acid

$$CO_2$$
 + $H_2O \stackrel{\text{(-CA)}}{\Leftrightarrow} H_2CO_3 \stackrel{\text{fast}}{\Leftrightarrow} HCO_3^- + H^+$

15,000 mmol CO₂ produced/day – oxidation carbohydrates, fats, amino acids

Lungs eliminate CO₂

NONvolatile Acid Production

Organic, inorganic acid produced - NOT CO₂

· Phosphoric, sulfuric, lactic acid

Metabolism protein, phospholipids, amino acids

Acid **NOT** excreted lungs

Derived from metabolism, diet, intestinal losses

 $\frac{\text{NOT}}{\text{CO}_2}$ easily converted

Renal Mechanisms

Nonvolatile acid production =

70 mmol/day

- Neutralized by HCO₃⁻ in ECF
- Kidneys must replenish lost HCO₃⁻
- Plasma = 25 mEq/L HCO₃⁻
- ECF = 14 L
- Total HCO₃⁻ buffering 350 mEq H⁺ (25 mEq/L HCO₃⁻ X 14 L)
- Deplete HCO₃ in 5 days if <u>not</u> replenished

Renal Mechanisms

- HCO₃- freely filtered glomerulus
 - 180 L/day X 24 mmol/L = 4,320 mmole/d
 - 70 mmol/d HCO₃- to buffer nonvolatile acid production
- Must reabsorb > 99.9% filtered HCO₃-
- Produce 70 mmol/d NEW HCO₃-
- Rely on <u>H+ secretion</u>
- Usually NO HCO₃- urine

NET Urinary Acid Excretion pg 132

Net urinary acid excretion (NAE)

EQUALS

Excreted H⁺ bound phosphate (as HPO₄²⁻, divalent), H₂PO₄⁻, (monovalent), creatinine, uric acid = *titratable acid*

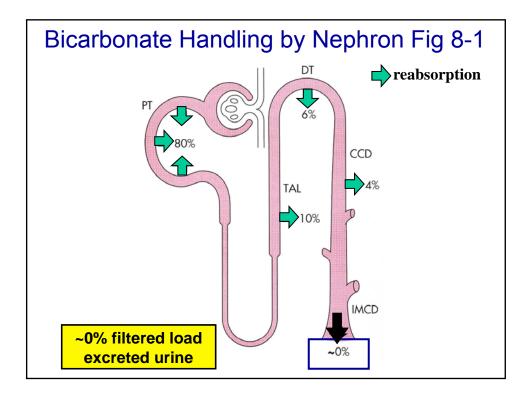
PLUS

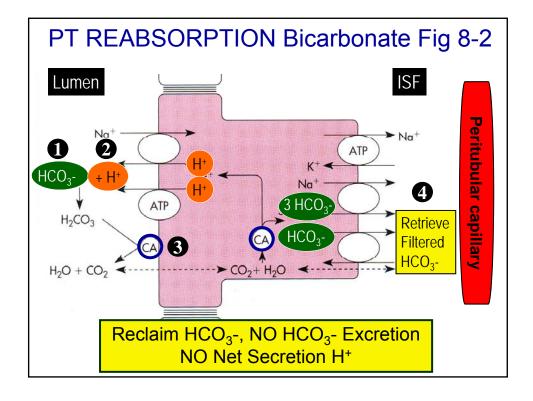
Excreted H⁺ bound NH₃ (as NH₄⁺)

MINUS

Excretion filtered HCO₃-

Renal Handling of H⁺


$$HCO_3^- + H^+ \Leftrightarrow CO_2 + H_2O$$


$$NaHCO_3^- + HCI \Leftrightarrow NaCI + CO_2^- + H_2O$$

- H⁺ load
- HCO₃- consumed by H⁺
- CO₂ excreted by lungs
- Kidneys <u>regenerate</u> HCO₃⁻ by **making** 70 mmol/d new HCO₃⁻ to neutralize nonvolatile acids

Renal Physiology Lecture 9

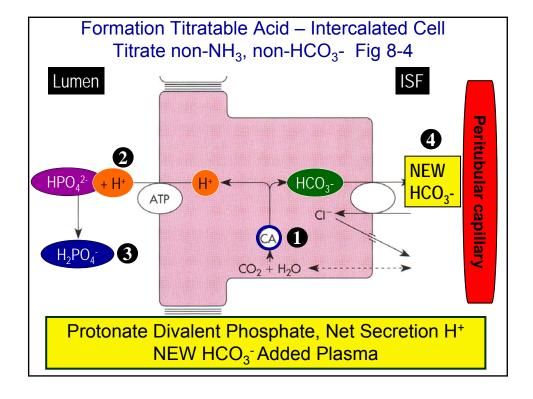
- Excreting Nonvolatile Acids
- 2. Bicarbonate Handling
- 3. Hydrogen Ion Regulation
- 4. Acid-Base Disorders

Reabsorption of Bicarbonate

- 1. H⁺ secreted + filtered HCO₃⁻ ⇒ H₂CO₃
- 2. $H_2CO_3 \Rightarrow CO_2 + H_2O$
 - carbonic anhydrase apical membrane
- 3. $CO_2 + H_2O$
 - rapidly reabsorbed

- HCO₃- appears peritubular blood
- $180 L/d \times 24 mmol/L = 4,320 mmol/d$ HCO_3^- filtered = 4,320 mmol/d H⁺ secretion

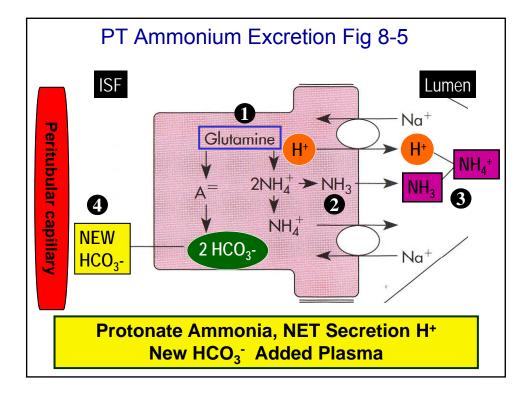
What happens if you take a drug that blocks CA = acetazolamide (Diamox)?


Weak Diuretic

- Inhibits apical, intracellular, basolateral carbonic anhydrases
- Inhibits HCO₃- reabsorption
- Reduces Na⁺ reabsorption
- Slows acid secretion
- Excretion of alkaline urine
- May cause metabolic acidosis

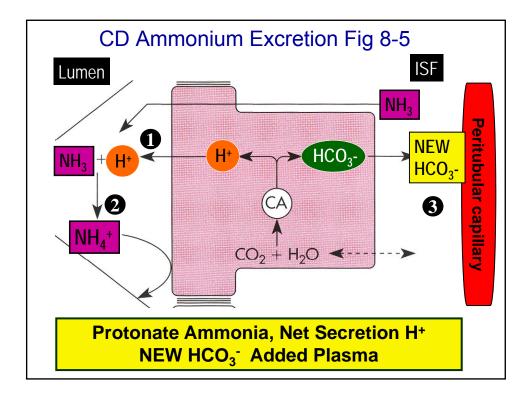
Treatment

 glaucoma, epilepsy, fluid retention in CHF, mountain sickness



Titratable Acid = Generation of New Bicarbonate

- Secreted H⁺ in lumen + filtered urinary buffers (HPO₄²⁻; divalent phosphate) <u>other than</u> HCO₃⁻
 - NEW HCO₃- added plasma
- Occurs only after filtered HCO₃ removed lumen
- H⁺ excreted as H₂PO₄⁻ (monovalent phosphate)


Filtered Phosphate - Primary Urinary Buffers

Ammoniagenesis – Generation of New Bicarbonate

- Stimulated by acidosis
- PT takes up glutamine & metabolized to NH₄⁺ (ammonium)
- NH₄⁺ dissociates to NH₃ + H⁺
- NH₃ diffuses to lumen, H⁺ secreted = NH₄⁺ lumen
- HCO₃- moves into peritubular capillaries
- Acidify the urine by excreting NH₄⁺

Addition Of A NEW Bicarbonate To Plasma

Renal Physiology Lecture 9

- Excreting Nonvolatile Acids
- 2. Bicarbonate Handling
- 3. Hydrogen Ion Regulation
- 4. Acid-Base Disorders

H⁺ Secretion – Proximal Tubule Fig 38-4AB

- Na⁺/H⁺ exchanger = 2/3 (major NHE3)
- 2. H^+ ATPase = 1/3 (pump)

80% Filtered HCO₃- Reabsorbed in PT

H+ Secretion - TAL & CD Fig 38-4CD

- 1. Na⁺/H⁺ exchanger (major *NHE3*)
- 2. H⁺ ATPase (pump)
- 3. H⁺/K⁺ ATPase (pump)

~ 20% Filtered HCO₃-Reabsorbed in TAL, DCT, CD

Hydrogen Ion Secretion - Apical

- Na⁺/H⁺ exchanger (major NHE3) all PCT, TAL, DCT
- H⁺ ATPase (pump) mainly intercalated cells CD; also PT, TAL, DCT ~ everywhere
- 3. H⁺/K⁺ ATPase (exchange pump) CD

Bicarbonate Reabsorption - Basolateral

- 1. Na⁺/HCO₃⁻ cotransporter (1:3, *NBC1*)
- 2. Cl⁻/HCO₃⁻ <u>exchanger</u> (anion exchanger, *AE*)

Secreted H⁺ From Blood to Lumen

Titrate:

- 1. Filtered Bicarbonate
- 2. Filtered Phosphate (or other buffers)
- 3. Ammonia (secreted + filtered)

Acid/Base Regulation

Net acid excretion (NAE)

Acidosis

$$\uparrow \uparrow$$
 NAE = $\uparrow U_{NH_4^+} V + \uparrow U_{TA} V - \downarrow U_{HCO_3^-} V$

Alkalosis

$$\downarrow \downarrow$$
 NAE = \downarrow U_{NH4}+ V + \downarrow U_{TA} V - \uparrow U_{HCO3}- V

Renal Handling of H+

- Acid load handled by "dividing" 70 mmol/d of carbonic acid (H₂CO₃)
 - excrete 70 mmol/d H⁺ into urine AND

-70 mmol/d NEW HCO $_3$ ⁻ into blood

THEREFORE

NEW HCO₃- neutralizes daily load 70 mmol nonvolatile acid

Sole Effective Route For Neutralizing Nonvolatile Acids

Renal Physiology Lecture 9

- Excreting Nonvolatile Acids
- 2. Bicarbonate Handling
- 3. Hydrogen Ion Regulation
- 4. Acid-Base Disorders

Primary Acid/Base Disturbances

Metabolic Acidosis

- 1. Uncontrolled diabetes mellitus
- 2. Renal failure

- 3. Severe diarrhea
- 4. Ingestion of antifreeze

Metabolic Alkalosis

- 1. Vomiting
- 2. Nasogastric drainage
- 3. Antacids

Primary Acid/Base Disturbances

Respiratory Acidosis

- 1. Chronic pulmonary disease
- 2. Pulmonary edema
- 3. Sedative overdosage
- 4. Obstruction of airway

Respiratory Alkalosis

- 1. High altitude
- 2. Anxiety, pain, fear hyperventilation
- 3. Gram-negative sepsis

Compensatory Responses by Lungs

Metabolic Acidosis

 ↓ P_{CO2} by hyperventilation

Metabolic Alkalosis

 ↑ P_{CO2} by hypoventilation

Compensation Almost Instantaneous

Compensatory Responses by Kidneys

Respiratory Acidosis

- î renal H⁺ excretion = î production NEW HCO₃- via NH₄+ excretion
- Acute ↑ P_{CO2} ↑ H⁺ secretion
- Chronic î P_{CO2} upregulate apical Na⁺H⁺ exchanger, H⁺ pump & basolateral Cl⁻HCO₃⁻ exchanger

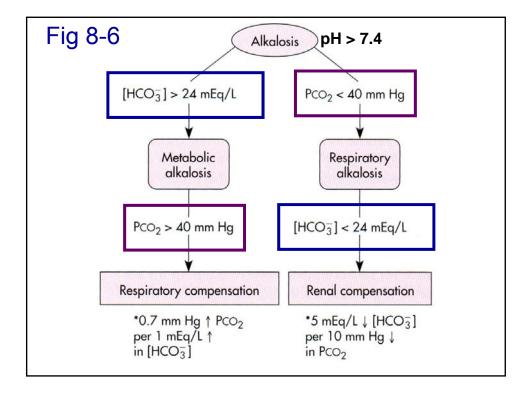
Respiratory Alkalosis

Opposite occurs + ↑ HCO₃ secretion

Compensation Takes Several DAYS

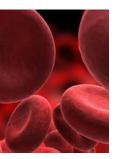
Compensatory Responses by Kidneys

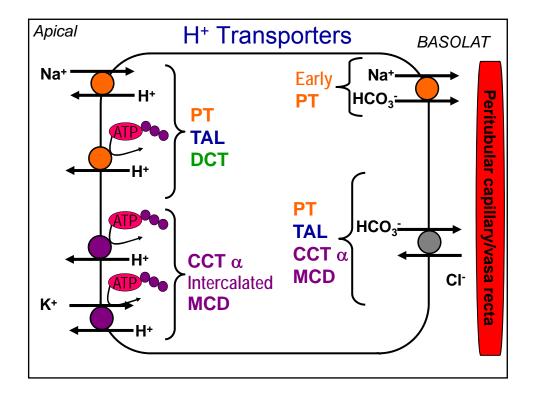
Metabolic Acidosis


- — ↑ excretion of titratable acid &
 NH₄⁺ = ↑ production NEW HCO₃⁻
- Alterations in numbers and activities of acid-base transporters (H⁺, HCO₃⁻ & NH₄⁺)

Metabolic Alkalosis

- 1 excretion HCO₃-
- Net acid excretion is negative


Compensation Takes Several DAYS



Role of Kidney in Acid Base Balance

- Preservation of HCO₃stores
 - H⁺ secretion reabsorb virtually ALL filtered HCO₃⁻
 - Formation NEW HCO₃- in renal cells, add to blood
- Net excretion of H⁺
 - Excretion of divalent phosphate
 - Ammonium excretion

What Did We Learn Today

- Kidneys Play an Important Role in Acid Base Balance
- Kidneys MUST Excrete Non-Volatile Acids
- Reabsorb ALL Filtered HCO₃₋
- 4. Excretion of Fixed H⁺
 - H₂PO₄⁻ (titratable acid)
 - NH₄⁺
- GOAL Net secretion of H⁺ & net reabsorption of NEWLY synthesized HCO₃⁻