### **Renal Physiology - Lectures**

- ✓ Physiology of Body Fluids PROBLEM SET, RESEARCH ARTICLE
- ✓ Structure & Function of the Kidneys
- ✓ Renal Clearance & Glomerular Filtration PROBLEM SET
- ✓ Regulation of Renal Blood Flow REVIEW ARTICLE
- ▼ Transport of Sodium & Chloride TUTORIAL A & B
- Transport of Urea, Glucose, Phosphate, Calcium & Organic Solutes
- ✓ Regulation of Potassium Balance
- 8. Regulation of Water Balance
- Transport of Acids & Bases
- 10. Integration of Salt & Water Balance
- 11. Clinical Correlation Dr. Credo
- 12. PROBLEM SET REVIEW May 9, 2011 at 9 am
- **13.** EXAM REVIEW May 9, 2011 at 10 am
- **14.** EXAM IV May 12, 2011



# Renal Physiology Lecture 8 Urine Concentration & Dilution

Chapter 5 Koeppen & Stanton Renal Physiology

- Water Balance
- 2. Free Water Clearance
- Antidiuretic Hormone = Arginine Vasopressin (ADH = AVP)
  - Site of secretion
  - Mechanism of action
  - Stimuli for release
- 4. Countercurrent System
  - Countercurrent multiplication Countercurrent exchange

## 'Magical Kidneys'

The kidneys have a critical ability to <u>vary</u> relative proportions of solutes and water excreted in the urine, as needed, to achieve solute and water balance.





### **Terminology**

<u>Diuresis</u> - urine flow above usual levels



Water Diuresis - ↑ urine flow - decreased reabsorption "free" water (i.e. water w/o solute)



<u>Antidiuresis</u> - low rate water excretion (<0.5 ml/min) as hyper-osmotic urine



| INput = OUTput H <sub>2</sub> O – Table 5-1 |
|---------------------------------------------|
|---------------------------------------------|

| INPUT                 | Amount (ml) | OUTPUT      | Amount (ml) |
|-----------------------|-------------|-------------|-------------|
| Fluids                | 1,200       | ** Urine ** | 1,500       |
| Food                  | 1,000       | Feces       | 200         |
| Aerobic<br>Metabolism | 300         | Skin/Sweat  | 450         |
|                       |             | Exhaled Air | 350         |
| Total                 | 2,500       | Total       | 2,500       |

| OUTput H <sub>2</sub> O – Table 5-2 | OU | Tput | $H_2O$ | - Tab | le 5-2 |
|-------------------------------------|----|------|--------|-------|--------|
|-------------------------------------|----|------|--------|-------|--------|

| Normal      |       | Prolonged Heavy | Amount         |
|-------------|-------|-----------------|----------------|
|             | (ml)  | Exercise        | (ml)           |
| ** Urine ** | 1,500 | ** Urine **     | <b>↓</b> 500   |
| Feces       | 200   | Feces           | 200            |
| Skin/Sweat  | 450   | Skin/Sweat      | <b>1</b> 5,350 |
| Exhaled Air | 350   | Exhaled Air     | 1 650          |
| Total       | 2,500 | Total           |                |

\* Water Balance Maintained By

↑ Water Intake \*

### Kidney Handling of Water - Urine

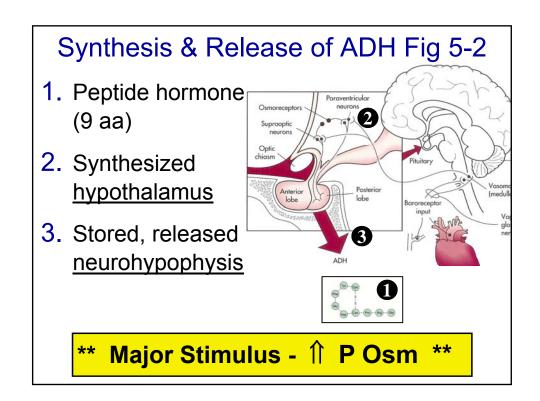
- Kidneys must excrete ~ 600 mosmol/d
  - -50 1,200 mOsm/kg $H_2O$
- H<sub>2</sub>O volumes excreted
  - 0.5 18 L/d
- Kidneys control H<sub>2</sub>O excretion independently of Na<sup>+</sup>, K<sup>+</sup>, urea



### Renal Physiology Lecture 8

- 1. Water Balance
- 2. Free Water Clearance
- 3. Antidiuretic Hormone = Arginine Vasopressin (ADH = AVP)
  - Site of secretion
  - Mechanism of action
  - Stimuli for release
- 4. Countercurrent System
  - Countercurrent multiplication Countercurrent exchange

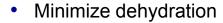
# Free Water Clearance – Estimate Ability to Concentrate or Dilute Urine pg 87

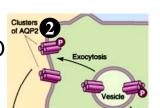

- "Positive" free-water clearance
  - $U_{Osm} < P_{Osm}$  (plasma osmolality)
  - water excreted excess solutes
  - solute free water = dilute urine
  - LOW AVP

# Free Water Clearance – Estimate Ability to Conc or Dilute Urine

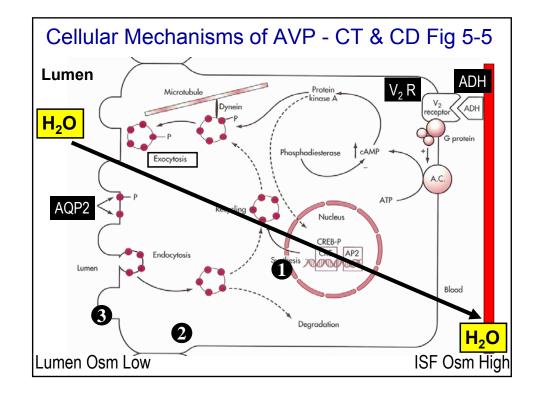
- "Negative" free-water clearance
  - $U_{Osm} > P_{Osm}$
  - Solutes excreted excess water = concentrated urine
  - HIGH AVP
- Free-water clearance = "Zero"
  - $U_{Osm} = P_{Osm}$

### Renal Physiology Lecture 8


- 1. Water Balance
- 2. Free Water Clearance
- 3. Antidiuretic Hormone = Arginine Vasopressin (ADH = AVP)
  - · Site of secretion
  - Mechanism of action
  - Stimuli for release
- 4. Countercurrent System
  - Countercurrent multiplication Countercurrent exchange

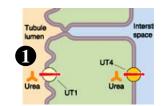


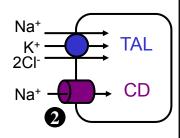

### **Tubular Actions of AVP**


Lumen

- 1. AVP binds V<sub>2</sub> receptor
  - BL membrane
- 2. Insert Aquaporin 2 AQP2
  - Apical membrane







\*\* <u>Dissociate</u> H<sub>2</sub>O Reabsorption & Na<sup>+</sup> Reabsorption - Collecting Ducts \*\*



### **Tubular Actions of AVP**

- 1. ↑ apical urea permeability of MCD
  - 1 urea reabsorption
- 2. ↑ NaCl reabsorption TAL, DT, CCD
  - ↑ H<sub>2</sub>O reabsorption
- 3. 1 renal medulla osmolality







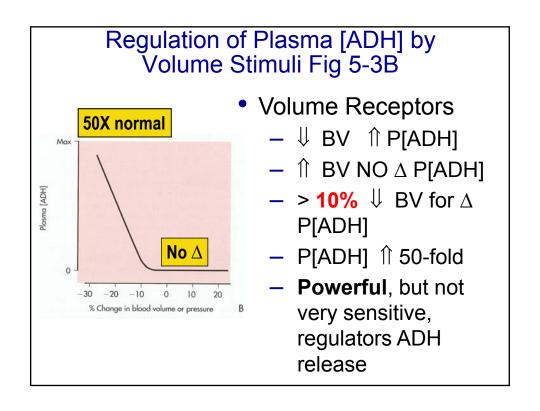
What happens if V2R or AQP2 has lack of function mutation?



# Nephrogenic Diabetes Insipidus

- Excessive urination (polyuria)
- Increased fluid intake (polydipsia)
- Extreme thirst
- Urinary frequency
- Nocturia
- Urine pale, colorless or watery in appearance
- Osmolality or specific gravity low

### Stimuli for ADH Release


- \*\* Osmolality of the Plasma \*\*
- Osmoreceptors
  - ↑ P<sub>Osm</sub> 1%, ↑ ADH



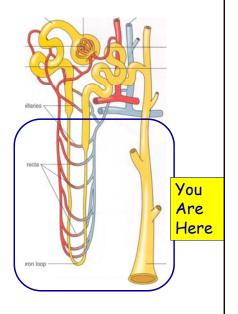
- − ↓ pressure
- Low pressure (LT atrium, large pulmonary
- High pressure (aortic arch, carotid sinus)
- ↑ ADH



# Regulation of Plasma [ADH] by Osmotic Stimuli Fig 5-3A • Osmoreceptors - Small $\triangle$ P<sub>Osm</sub> = Big $\triangle$ ADH release - P[ADH] $\triangle$ 10-fold - Sensitive (precise) regulators ADH release 30 mOsm/kg H<sub>2</sub>O

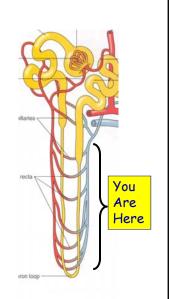


### Renal Physiology Lecture 8


- 1. Water Balance
- 2. Free Water Clearance
- 3. Antidiuretic Hormone = Arginine Vasopressin (ADH = AVP)
  - · Site of secretion
  - Mechanism of action
  - Stimuli for release
- 4. Countercurrent System
  - Countercurrent multiplication Countercurrent exchange

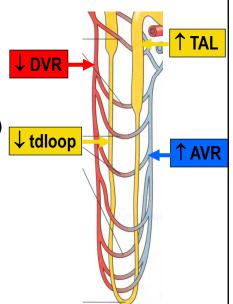
### Countercurrent MECHANISM pg 83-85

- Mechanism by which urine is concentrated
- Dependent upon:
  - unique solute <u>transport</u> processes


### **AND**

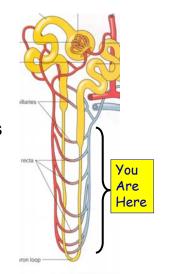
 specific <u>anatomical</u> arrangement of loops of Henle & vasa recta

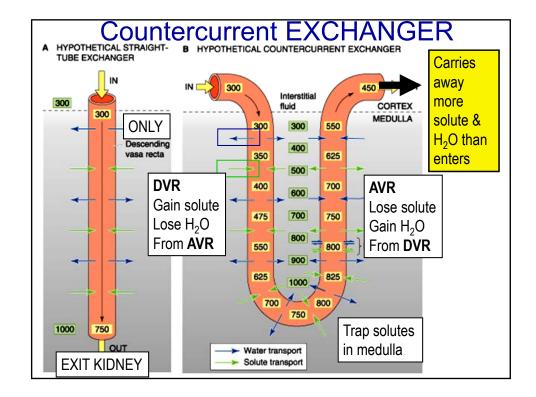



### Countercurrent SYSTEM

- Countercurrent <u>flow</u> – direction anatomy
- 2. Countercurrent exchange - vasa recta capillaries
- 3. Countercurrent multiplication tubule epithelia

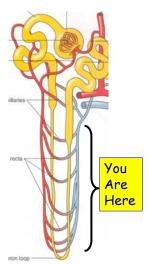



### 1. Countercurrent FLOW


- Hairpin configuration
  - anatomical
  - loops of Henle (tubules)
  - vasa recta (capillaries)
- Descending limbs close to ascending limbs
- Fluid *flow* in opposite directions



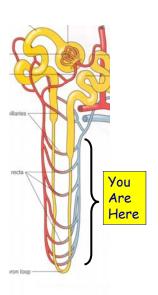
### 2. Countercurrent EXCHANGER


- Vasa recta (capillaries)
  - Countercurrent exchangers
    - Passive process depends on diffusion solutes & water in both directions across permeable walls vasa recta
    - Restores isotonic plasma
    - Maintains hypertonic medullary interstitium



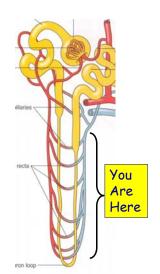


### 3. Countercurrent MULTIPLIER


- Loops of Henle (tubules)
  - countercurrent multipliers
    - Pumping solute creates large axial gradient
    - Small lateral gradient
    - Establishes
       hyperosmotic medullary
       interstitial fluid

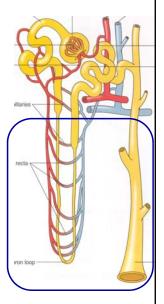


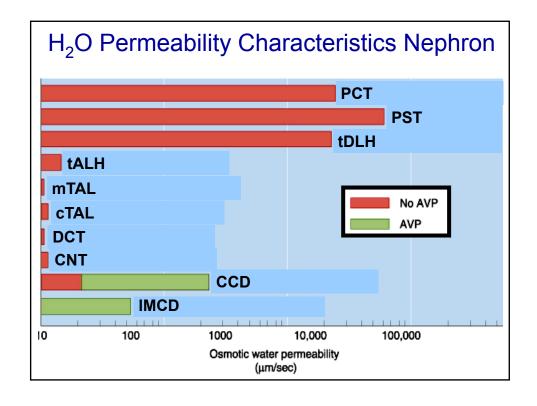
### Countercurrent SYSTEM = 1 + 2 + 3

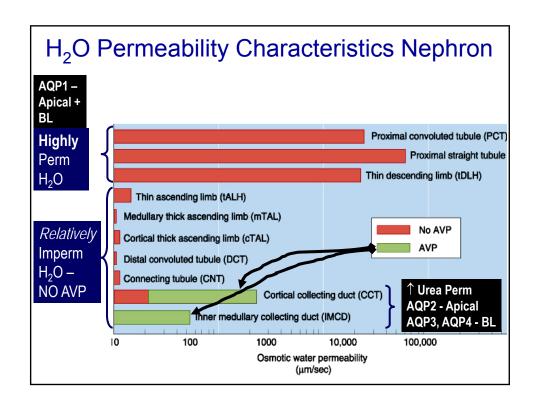

Depends on membrane transport properties

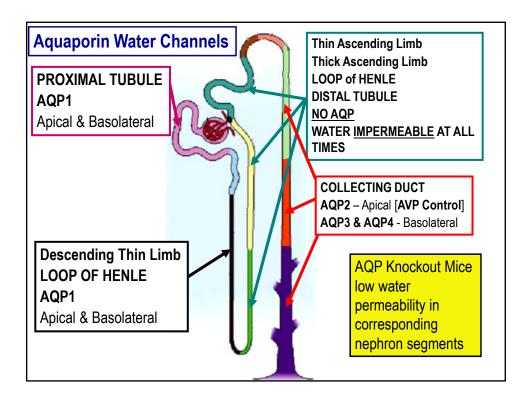
- TAL (tubule)
  - Active transport
  - Multiplier
- VR (capillaries)
  - Passive transport
  - Exchanger
- Thin descending limb of Henle's loop (tubule)
  - Passive structure

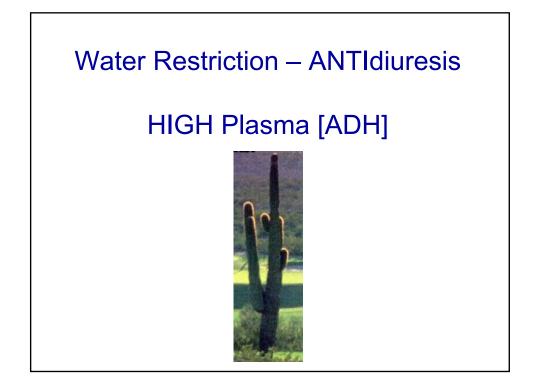


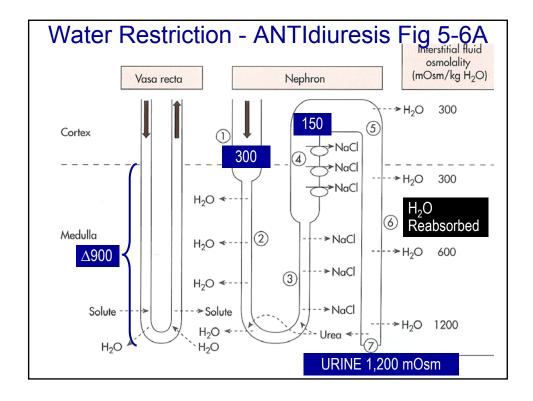

### Summary - Countercurrent SYSTEM


- Countercurrent arrangement
  - CD fluid exposed interstitial hyperosmolality
  - conc urine
  - passive reabsorption H<sub>2</sub>O in presence AVP





### Medullary Interstitium pg 85


- Medullary interstitial fluid osmotic pressure = driving force H<sub>2</sub>O reabsorption thin descending limb LOH & CD
- High ADH ↑↑ IMCD permeability to urea: medullary ISF osmolality = ½ urea + ½ NaCl
- Urea ineffective osmole for CD; but effective for thin descending limb
- Urine can never be more conc than papillary ISF



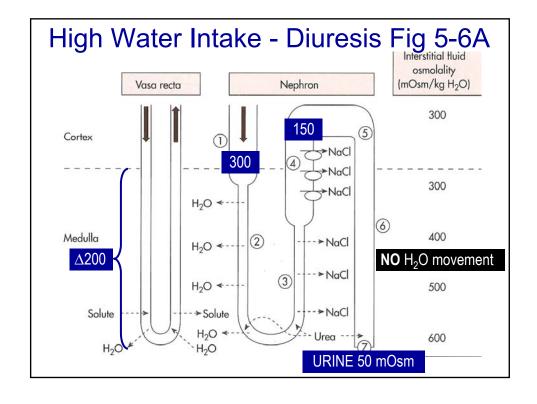












### Summary - ANTIdiuresis

- ↑ P<sub>Osm</sub> = ↑ [ADH]
- Principal cells CT
  - highly <u>permeable</u> to water
  - IMCD permeable to <u>urea</u>, passively reabsorbed
  - === Concentrated urine (max 1,200 mOsm/L) w/o major ∆ solute excretion





# High Water Intake – Diuresis LOW Plasma [ADH]



### **Summary - Water Diuresis**

- ↓ P<sub>Osm</sub> ↓ [ADH]
- Papillary Osm ~ ½ of antidiuresis



- Late DT to end nephron
  - relatively <u>impermeable</u> to H<sub>2</sub>O



=== Dilute Urine (min -50 mOsm/L)

# Important Distinctions Relative to Na<sup>+</sup> & H<sub>2</sub>O Balance

- ∆ Na<sup>+</sup> balance manifests as
  - △ ECF **VOLUME**

(volume depletion or volume expansion)

- Δ H<sub>2</sub>O balance manifests as
  - $\Delta$  P<sub>Osm</sub> measured  $\Delta$  P<sub>Na</sub>

# Important Distinctions Relative to Na<sup>+</sup> & H<sub>2</sub>O Balance

### Disturbances of H<sub>2</sub>O balance:

- Hypernatremia (P<sub>Na</sub> > 145 mEq/L) – deficit H<sub>2</sub>0 relative to salt "dehydration"
  - Diabetes Insipidus (Central or Nephrogenic)

# Important Distinctions Relative to Na<sup>+</sup> & H<sub>2</sub>O Balance

### Disturbances of H<sub>2</sub>O balance:

- Hyponatremia (P<sub>Na</sub> < 135 mEq/L) – excess H<sub>2</sub>0 relative to salt
  - Syndrome of Inappropriate ADH Secretion (SIADH)



### What Did We Learn Today?

- 1.  $H_2O$  in =  $H_2O$  out
- Countercurrent mechanism establishes hyperosmotic medulla
- 3. P<sub>Osm</sub> *major* control AVP release
- 4. ADH regulates H<sub>2</sub>O reabsorption by CD
  - regulate H<sub>2</sub>O excretion independent of solute excretion
- 5. WOW!!! 0.5 to 18 L/day