

NEW ORLEANS School of Medicine

INTRODUCTION

- Health disparities are preventable differences in the burden of disease, injury, violence or in opportunities to achieve optimal health experienced by socially disadvantaged racial, ethnic and other population groups and communities.
- Disparate access to high quality care and health outcomes have been reported for a variety of marginalized populations including but not limited to racial and ethnic minority groups, rural populations, and women who are underinsured or of low socioeconomic status.
- Endometrial cancer is the most common female gynecologic malignancy.
- Lynch syndrome makes up 5% of all colorectal cancer cases and 2-3% of all endometrial cancer cases.
- The diagnosis of Lynch Syndrome is established by germline mutations in mismatch repair genes MLH1, MSH2, MSH6, PMS2 and EPCAM.
- Immunohistochemistry (IHC) or microsatellite instability (MSI) analysis of endometrial cancer tumors can identify patients who may benefit from genetic counseling and germline testing, thereby to identify patients with Lynch Syndrome.
- Our objective is to determine if there are disparities in the genetic evaluation of women with endometrial cancer at a safety net hospital in New Orleans.
- Specifically, we sought to determine if age, race, BMI, or insurance status were associated with differences in rates of tumor genetic testing, genetic counseling, and germline testing.

METHODS

- Using ICD9 and 10 codes for endometrial cancer, women who received care for endometrial cancer at University Medical Center in New Orleans from 1/1/2013 to 12/31/2017 were identified.
- Retrospective chart review was performed, and data was compiled into a REDCap Database.
- Information collected included demographics, insurance status, personal and family history, endometrial cancer diagnosis and treatment course, and details of tumor and germline genetic testing and genetic counseling.
- Univariate analysis was performed.

Table 1: Demographic and Health Information

Demographic	Overall Cohort (%)	Demographic	Overall Cohort (%)	Med
Total	147	<u>BMI (kg/m²)</u>		36.3
Race		Underweight	2 (1.4%)	
Black	64 (43.5%)	Normal	11 (7.5%)	
White	75 (51.0%)	Overweight	27 (18.4%)	
Hispanic	5 (3.4%)	Class I Obese	28 (19.0%)	
Other	3 (2.0%)	Class II Obese	20 (13.6%)	
Insurance Status		Class III Obese	59 (40.1%)	
Private	20 (13.6%)	<u>Charlson Comorbidity</u> <u>index</u>		4 (2.
Medicare	40 (27.2%)	1-3	54 (36.7%)	
Medicaid	52 (35.4%)	4-6	69 (46.9%)	
Uninsured	35 (23.8%)	>6	24 (16.3%)	

Healthcare Disparities in Genetic Evaluation of Women with **Endometrial Cancer in New Orleans**

Morgan McDougal, BS; Pallavi Nair-Fairless, MD, MS; Tova Weiss, BA; Amelia Jernigan, MD **Department of Obstetrics and Gynecology**

Table 2: Personal and Family History Personal and Family History Overall Cohort (%) Total 147 18 (12.2%) Family history of Lynch spectrum cancer Prior personal history of Lynch spectrum cancer 3 (2.0%) Synchronous Lynch spectrum cancer 5 (3.4%)
 Table 3: Endometrial Cancer Diagnosis and Treatment
 Endometrial Cancer Diagnosis and Treatment **Overall Cohort (%)** Total 147 Age at diagnosis (years) Median (95% CI) 57.39 (36.8-67.8) Stage IA 69 (46.9%) IB 16 (10.9%) II 14 (9.5%) IIIA 4 (2.7%) IIIB 3 (2.0%) IIIC1 7 (4.8%) IIIC2 5 (3.4%) IVA |2(1.4%)|IVB 13 (8.8%) Unclear 15 (10.2%) **Tumor Grade** 62 (44.9%) 32 (23.2%) 44 (31.9%) **Initial Treatment** 128 (87.1%) Surgery 58 (39.5%) Radiation 39 (26.5%) Chemotherapy 3 (2.0%) Hormonal therapy 10 (6.8%) No therapy Time from diagnosis to the date of last follow up (months) Median (95% CI) 13.44 (1.1-54.6) Status at last follow up Alive with no evidence of disease 101 (69.7%) Alive with disease 37 (25.5%) **Died of endometrial cancer** 4 (2.8%) 3 (2.1%) **Died of other causes**

5.33 (23.5-55.0)

(2.0-9.0)

edian (95% CI)

Louisiana State University Health Sciences Center, New Orleans, Louisiana

- 31 women (21.1%) had genetic testing (IHC for MMR or PCR for MSI) performed on their tumors.
- 11 women were offered genetic counseling, and 7 of these women attended a meeting with a genetic counselor.
- 4 had germline testing performed; none revealed germline mutations suggestive of Lynch syndrome
- There were no significant differences in rates of tumor genetic testing based on the following:
- Age (20.1% if <65 vs. 28.6% if ≥65, p=0.51)
- Race (25.0% black vs. 19.7% white, p=0.46)
- BMI (23.1% if BMI \geq 30 kg/m² vs. 17.9% if BMI < 30 kg/m², p=0.51)
- Insurance status (30.0% privately insured vs. 20.0% public or uninsured, p=0.33) There were no significant differences in rates of genetic counseling based on the following:
- Age (7.8% if <65 vs. 7.1% if ≥65, p=0.94)
- Race (10.9% black vs. 5.6% white, p=0.26)
- BMI (7.7% if BMI \geq 30 kg/m² vs. 7.7% if BMI < 30 kg/m², p=1.00)
- Insurance status (10.0% privately insured vs. 7.3% public or uninsured, p=0.68) There were no significant differences in rates of germline testing based on the following:
- BMI (2.9% if BMI \geq 30 kg/m² vs. 2.6% if BMI < 30 kg/m², p=0.92)
- Race (4.7% black vs. 1.4% white, p=0.26)
- All 4 women were <65 years old and were publicly insured or uninsured.

DISCUSSION

- of family history.
- study had IHC or MSI analysis of their tumors, suggesting an overall underutilization of tumor testing.
- Furthermore, rates of genetic counseling and germline testing were extremely low.
- Given the high incidence rate in the Acadian population, more of the women in our study should have been offered genetic counseling. broader patient population.

REFERENCES

Dillon, Jessica L., et al. "Universal screening for Lynch syndrome in endometrial cancers: frequency of germline mutations and identification of patients with Lynch-like syndrome." Human pathology 70 (2017): 121-128. Egoavil, Cecilia, et al. "Prevalence of Lynch Syndrome among Patients with Newly Diagnosed Endometrial Cancers." PLoS ONE, vol. 8, no. 11, 7 Nov. 2013, doi:10.1371/journal.pone.0079737.editmore horizontal Esteller, Manel, et al. "MLH1 Promoter Hypermethylation Is Associated with the Microsatellite Instability Phenotype in Sporadic Endometrial Carcinomas." Oncogene, vol. 17, no. 18, 10 Mar. 1998, pp. 2413–2417., doi:10.1038/sj.onc.1202178. Goodfellow, Billingsley, et al. "Combined Microsatellite Instability, MLH1 Methylation Analysis, and Immunohistochemistry for Lynch Syndrome Screening in Endometrial Cancers from GOG210: An NRG Oncology and Gynecologic Oncology Group Study." Journal of Clinical Oncology, vol. 33, 20 Dec. 2015 Haraldsdottir, Sigurdis et al. "Colon and Endometrial Cancers with Mismatch Repair Deficiency Can Arise from Somatic, Rather Than Germline, Mutations." Gastroenterology 147.6 (2014): 1308–1316.e1. PMC. Web. 26 Apr. 2018.

Karlitz, Blanton, et al. "Colorectal Cancer Incidence Rates in the Louisiana Acadian Parishes Demonstrated to the Among the Highest in the United States." Clinical and Translational Gastroenterology, vol. 5, 14 Mar. 2014 Long, Peng, et al. "Role of endometrial cancer abnormal MMR protein in screening Lynch syndrome families." Int J Clin Exp Pathol, vol. 10, 19 Aug. 2014

Okuda, Tsuyoshi, et al. "Genetics of Endometrial Cancers." Obstetrics and Gynecology International, vol. 2010, 22 Oct. 2009, pp. 1–8., doi:10.1155/2010/984013.

NCCN Guidelines: Version 1.2018, 7/12/2018. Genetic/Familial High-Risk Assessment: Colorectal

Gruber SB, Kohlmann W. The genetics of heriditary nonpolyposis colorectal cancer. J Nat Comp Cancer Net. 2003;1:137-44.

Lynch Syndrome. Practice Bulletin No 147. American College of Obstetrics and Gynecologists. Obstet. Gynecol 2014: 124:1042-54.

RESULTS AND CONCLUSIONS

The Society of Gynecologic Oncology and National Comprehensive Cancer Network recently recommended genetic tumor testing for all women with endometrial cancer, regardless

Young women, women with abnormal tumor testing results, and women with a strong personal or family history of cancer may benefit from genetic counseling and additional testing. Although there were no significant differences in rates of tumor genetic testing or genetic counseling based on age, race, BMI, or insurance status, only 21.1% of the women in our

Genetic counseling can identify risk factors for the patient and the patient's family, and germline testing can identify patients with Lynch syndrome. In the future, we plan to expand the study to include more endometrial cancer patients in South Louisiana to observe the trends of genetic evaluation with a larger sample size and

Tao, Meng Hua, and Jo L. Freudenheim. "DNA Methylation in Endometrial Cancer." Epigenetics, vol. 5, no. 6, 16 May 2010, pp. 491–498., doi:10.4161/epi.5.6.12431.