

Spinal Epidural Abscess: Institutional Insights, Patient Outcomes, Epidemiology, and Prognostic Factors Kaleb Derouen¹, John Wilson MD², **Jack Leoni¹**, Kierany Shelvin MS³, George Crabill MD²,

Ian Ramsay MD², John Steck MD², Gabriel Tender MD²

Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA¹; Louisiana State University, Department of Neurosurgery, New Orleans, LA²; Louisiana State University, Department of Surgery, New Orleans, LA³

Introduction

- Spinal epidural abscess (SEA) is an infection within the epidural space, located between the dura mater vertebral periosteum, & can lead to severe neurological complications.
- The established gold standard for treatment involves a combination of

Patient Demographics	Operative	Non-operative	p-value	Factor
	(<i>n=46</i>)	(n=73)	p value	1 40101
Age (years), median (IQR)	54.5 (45, 61.75)	46 (40, 53)	< 0.001	Time to surgery (
Sex (%)				Less than 7
Male	34 (73.9)	54 (74.0)	1	Greater tha
Female	12 (26.1)	19 (26.0)		Failed medical m
Race (%)				and delayed surg
White/Caucasian	25 (54.3)	43 (58.9)	0.85	Reoperation rate.
Black/African American	20 (43.5)	28 (38.4)		Smoker (%)
Other	1 (2.1)	2 (2.7)		IVDU (%)
Smoking status (%)			1	mRS*, median (Ig
Smoker	37 (80.4)	60 (82.2)		Table 4 Co
Non-smoker	9 (19.6)	13 (17.8)		
IV Drug User (%)	40 (87.0)	58 (79.5)		<i>F UCLOP</i>
Comorbidities (%)				
Hypertension	11 (23.9)	23 (31.5)	0.49	Length of stay (de
Diabetes	4 (8.7)	11 (15.0)	0.46	
Chronic Hepatitis C	13 (28.3)	25 (34.2)	0.63	Operative (n
Rheumatoid arthritis	3 (6.5)	1 (1.4)	0.32	Non-operati
Endocarditis	4 (8.7)	12 (16.4)	0.35	mRS*, median (Ig
HIV	2 (4.3)	4 (5.5)	1	,
Alcohol abuse	2 (4.3)	7 (9.6)	0.49	
Osteomyelitis	25 (54.3)	40 (54.8)	1	lable 5. Co
Table 2. Comparisons	of operative	& non-operative S	SEAs	Factor
Factor	Operative $(n=46)$	Non-operative ($n=73$)	p-value	Length of stay (de
Average length of stay (days), median (IOR)	17.5 (11.5, 29.5)	6 (1, 17.75)	< 0.001	Dequined exercit
Followed up in clinic (%)	31 (67.4)	42 (57.5)	0.38	
Location of the abscess (%)				IVDU(%)
Cervical	15 (32.7)	14 (19.2)	0.15	Operative (n
Thoracic	18 (39.1)	11 (15.0)	0.006	Non-operati
Lumbar	13 (28.3)	46 (63.0)	< 0.001	mDC* modian (1
Sacral	2 (4.3)	2 (2.7)	1	$\frac{1}{2}$
Length of abscess (no. of	2(2,3)	2(2, 2.25)	0.58	Non-operati

Results

Table 3. Comparison of operative SEA cases

Factor	Symptom Improvement or Resolved (n=36)	No Symptom Improvement (n=10)	p-value
Time to surgery (days), median (IQR)	1 (1, 7)	1.5 (1, 2)	0.63
Less than 72 hours	20 (62.5)	6 (66.7)	
Greater than 72 hours	12 (37.5)	3 (33.3)	
Failed medical management and delayed surgical intervention (%)	15 (41.7)	3 (30)	0.71
Reoperation rates (%)	17 (47.2)	3 (30)	0.48
Smoker (%)	30 (83.3)	7 (70)	0.38
IVDU (%)	30 (83.3)	10 (100)	0.32
mRS*, median (IQR)	2 (1, 3.25)	1 (1, 3)	0.57

decompressive surgery, abscess drainage, and antibiotics to eliminate the infectious agent.

- The classic triad of pain, fever, and neurological deficits is rarely encountered upon initial presentation.
- The rapid progression of a SEA underscores the critical need for early diagnosis and treatment.

Objective: This study aimed to identify prognostic factors and outcomes associated with SEAs and to determine the characteristics of patients & pathologies that benefit most from surgery by investigating the management of SEA at a single Level I Trauma Center.

Table 4. Comparison of outcomes between IVDU and non-IVDU

Factor	IVDU (<i>n</i> =94)	non-IVDU (<i>n</i> =25)	p-value
Length of stay (days), median (IQR)	9.5 (1.75, 18.25)	24 (18, 33.25)	<0.001
Operative (n=46) Non-operative (n=73)	18 (10.75, 34.50) 3.5 (1.0)	17.5 (17.0, 18.0) 28.5 (23.5, 37.75)	1 0.001
mRS*, median (IQR)	1 (1, 2)	2 (1, 2)	0.50

Factor	< 50 years old ($n=62$)	> 50 years old ($n=57$)	p-value
Length of stay (days), median (IQR)	15 (6.75, 20.25)	9 (2.75, 25.5)	0.53
Required operation (%)	18 (29.0)	28 (49.1)	0.039
IVDU (%)			
<i>Operative (n=46)</i>	18 (100)	22 (78.5)	0.067
<i>Non-operative</i> $(n=73)$	25 (56.8)	29 (100)	< 0.001
mRS*, median (IQR.)			
<i>Operative (n=46)</i>	2 (1, 2.75)	1 (1, 3.5)	0.32
Non-operative $(n=73)$	1 (1, 2)	1 (1, 2)	0.46

Methods

A retrospective chart review was performed on patients who were diagnosed with a spinal epidural abscess at University Medical Center in New Orleans from January 2015 to December 2021. Information pertinent to the study that was collected included patient demographic data,

mRS*, median (IQR)	2 (1, 3)	1 (1, 2)	0.042	*modified Rankin se
*modified Rankin scale				

Summary

Of the 119 patients diagnosed with a SEA, operative patients had longer hospital stays than non-operative patients (17.5 vs. 6.0 days, p<0.001). Within the operative group, 78.3% reported symptom improvement. IVDU patients in the operative group did not have prolonged hospitalizations (18.0 vs. 17.5 days, p=1), whereas in the non-operative group, IVDU patients had shorter stays (3.5 vs. 28.5 days, p=0.001). At discharge, patients with and without a history of IVDU displayed similar modified Rankin scale scores (p=0.50). Age did not significantly impact hospital stays (p=0.53) or modified Rankin scale scores (p=0.32) in either treatment group.

Conclusions

SEA presents a formidable challenge that demands early recognition and intervention. The choice between surgical and medical management hinges on

