

Physiological vs Perceived Stress on Cognition in Multiple Sclerosis

STATE IN STATE IN SCIENCES CITIES

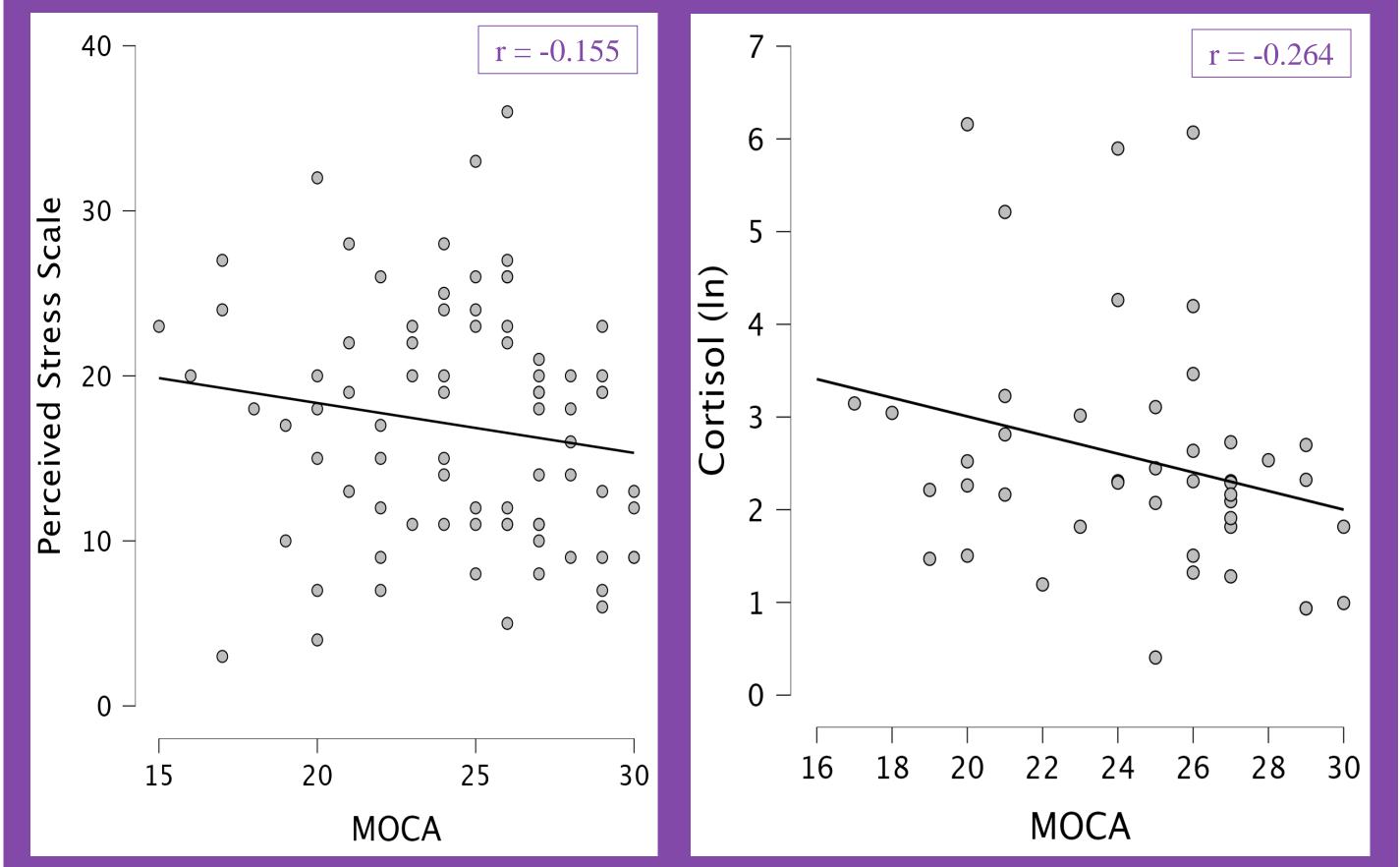
Malcolm Sundell; Isabelle Mermilliod; Shannin Moody, PhD; Deidre Devier, PhD

LSUHSC School of Medicine, Department of Neurology – New Orleans, LA.

Introduction

- Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease of the central nervous system manifesting in chronic inflammation and demyelination.
- Despite its heterogenous symptom profile, nearly half of individuals with MS will have cognitive impairment affecting their memory, attention, spatial perception, and other parameters (1).
- While the exact etiology of MS is unknown and likely multivariate, stressful life events can predispose the diagnosis or exacerbation of MS (2).
- Further, the disease itself can impart undue stress by hindering one's daily activities, work performance, and social engagement.
- We hypothesize that participants with higher selfreported stress will demonstrate poorer performance on on our cognitive assessment.
- We also foresee an effect of physiological levels of stress on these cognitive deficits, suggesting that higher cortisol levels could further impair cognition in people with MS.

MoCA


Methods

- A total of 83 participants with MS were enrolled in this study.
- (64 female and 19 male participants, 42 white and 41 black participants)
- Participants were assessed for cognitive function using the Montreal Cognitive Assessment (MoCA).
- Participants completed the Perceived Stress Scale (PSS), a questionnaire evaluating the degree of stress in their daily life and circumstances.
- Physiological stress was measured using a 3-centimeter hair sample to reliably determine mean cortisol concentration over the prior 3 months, then set to a log scale.
- A Pearson Correlation was run on the dataset, including additional demographic data (disease duration, gender, age, education, race).
- With these correlations in mind, a more focused regression was completed for cortisol's impact on the MoCA and included a comparison group of healthy controls (HC).

Correlations

	Dx Duration	Gender	Age	EDU	Race	MOCA	Cortisol (ln)
1. Dx Duration	_		· ·				
2. Gender	-0.317 **	_					
	0.004						
3. Age	0.605 ***	-0.201					
	< .001	0.069					
4. Education	0.177	-0.118	0.193	_			
	0.112	0.29	0.08				
5. Race	-0.289 **	0.252 *	-0.479 ***	-0.312 **			
	0.008	0.022	< .001	0.004			
6. MOCA	-0.058	-0.107	-0.011	0.348 **	-0.255 *		
	0.613	0.346	0.924	0.002	0.023		
7. Cortisol (ln)	0.257	-0.24	-0.144	-0.182	0.035	-0.264	_
	0.089	0.112	0.346	0.231	0.822	0.08	
8. PSS	-0.144	0.079	-0.217 *	-0.058	-0.099	-0.155	0.139
	0.196	0.478	0.049	0.603	0.375	0.17	0.362

* p < .05, ** p < .01, *** p < .001

Results

Effect on MoCA	Multiple	Sclerosis	Healthy Control		
	r	\mathbb{R}^2	r	\mathbb{R}^2	
	0.459	0.21	0.754	0.568	
	t	p	t	p	
Cortisol (ln)	-2.13 *	0.04	-1.73	0.102	
Age	-1.584	0.121	0.437	0.667	
Gender	1.607	0.116	-2.136	0.048	
Race	0.94	0.353	3.63 **	0.002	
Education	1.139	0.262	-1.063	0.303	

- Our analysis revealed that while both perceived stress and physiological stress showed trends correlating to decreased cognitive function, only that of cortisol was significant.
- Of note, self reported stress levels on the PSS did not correlate with our measured cortisol levels from hair samples.
- Incidentally, we found that race and education were significantly correlated with MoCA results (despite the assessment controlling for years of education).
- When looking into the focused regression, cortisol accounts for a significant difference in MoCA scores that could not be otherwise explained by demographic data of age, gender, race, or education.
- Finally, the comparison group revealed that race predicted MoCA scores for healthy controls, while cortisol was insignificant (contradictory to our results for MS).

Conclusion

- This study suggests a negative impact of physiological stress on cognitive impairment in MS, while perceived stress appears to play a less significant role.
- Because our measures of physiological and perceived stress did not correlate with each other, we are more certain that these two measures capture distinct aspects of the stress experience.
- Future studies may look to optimize a questionnaire to better capture perceived stress or look beyond cortisol to other physiological measures of stress.

References

- 1. Benedict RHB, Amato MP, DeLuca J, Geurts JJG. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020 Oct;19(10):860-871. doi: 10.1016/S1474-4422(20)30277-5
- 2. Pereira, G.M., Becker, J., Soares, N.M. et al. Hair cortisol concentration, cognitive, behavioral, and motor impairment in multiple sclerosis. J Neural Transm 126, 1145–1154 (2019). doi.org/10.1007/s00702-019-02040-w