Modeling Sensitivity of Neuronal Firing to L-Type Calcium Channel Activity Khalil El-abbassi, Christopher Knowlton, **NEW ORLEANS NEW ORLEANS** School of Medicine School of Medicine **Carmen Canavier Ph.D.**

Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center

Figure 5. A. Frequency was varied by increasing g_{CaV1}. A1. Faster frequencies had a higher value of g_{CaV1} , so blocking g_{CaV1} produced a greater decrease in frequency. A2. This was not accounted for by an increase in mean inter-spike membrane potential. B. Specifically the sodium component of the leak g_{I} was varied, so increasing g_{I} also increased the frequency. B1. In this case the change in frequency with $g_{CaV} = 0$ was not strongly dependent on baseline. B2. No increase in mean inter-spike membrane potential.

Motivation

D

Figure 1. Published data from identified DLSprojecting neurons (Shin et. Al 2022 Science Advances) show a linear relationship between the baseline frequency and decrease in frequency when Ca_V1.3 is blocked with ISR.

Voltage (mV)

Figure 3. The conductance for Ca_v1.3 is nonlinear. The sigmoid represents the steady state open fraction of the Ca_V1.3 channels (m) as a function of voltage. The Ltype calcium current is $I_{CaV1} = g_{CaV1} * m * (E_{Ca} - V)$, where m is the voltage and time-dependent gating variable. The leak is just $I_L = g_L^*(E_{Ca} - V)$ with no nonlinear term.

Results

Conclusion

This research project was supported through the LSU Health Sciences Center, School of Medicine.