51 **NEW ORLEANS** School of Medicine

Interplay between Topoisomerase I and RNA Polymerase of Chlamydia trachomatis Amanda Baltar dos Santos, Li Shen.

Louisiana State University Health Sciences Center (LSUHSC) Department of Microbiology

Introduction

- Chlamydia trachomatis is a gram-negative, obligate intracellular bacterium that is the leading cause of sexually transmitted infection (STI). In 2020, ~128.5 million new infections with C. trachomatis occurred worldwide among adults aged 15 to 49 years.
- ✤ All Chlamydia strains share a unique developmental cycle that alternates between an infectious elementary body (EB) and a non-infectious reticulate body (RB).
- During the developmental cycle, C. trachomatis expresses its genes in a temporal fashion.

Direct TopA-RpoB interaction

Transcription is the first and key step of gene expression and controlled by RNA polymerase (RNAP) composed by $\alpha_2\beta\beta'\omega$ subunits (core enzyme) and a sigma factor (σ).

Chlamydial Topoisomerase I (TopA)

- Topoisomerase I (TopA) is an essential enzyme and recognized target of antimicrobial and anti-cancer agent.
- ✤ It removes the hyper negative supercoils generated on the DNA template by the progressing RNAP complex during transcription elongation.
- Previously, our laboratory utilized the recently developed CRISPR technique to knock down *topA* encoding TopA.
- ✤ Repression of topA impaired EB-to-RB transition; conversely, expression of late genes was downregulated, maintained their early genes expression, and highlighting the important link of DNA supercoiling and the developmentally regulated gene expression.

Hypothesis

Figure 1. Map of the plasmids used. (1)-(2) co-transformation of pET28rpoB and pETHis6topA. (1)-(3) single transformation with pET28rpoB or pBOMBL-topAH6.

Inducible expression of proteins

Figure 4. Verifying expression and presence of H6TopA using SDS-PAGE (left) and Coomassie blue staining, and Western blot (right). Lanes 1,6: uninduced bacterial lysate; lanes 2,7: aTCinduced bacterial lysate; lanes 3,8: H6TopA bound Ni-NTA beads; lanes 4,9: H6TopA and RpoB complex; Lane 5: marker.

Figure 5. Verifying expression and presence of RpoB using

By directly interacting with the RNAP, TopA participates in the regulation of transcription during the chlamydial developmental cycle.

Methods

We constructed three different plasmids:

(1) pETHis6*topA* (in which *his6-topA* is controlled by IPTG-inducible T7 promoter).

(2) pET28rpoB (in which *rpoB* is under the control of **IPTG-inducible T7 promoter).**

(3) pBOMBL-*topAH*6 (*topA-hise* is under the control of aTC-inducible Ptet promoter).

- Plasmids were transformed into the *E. coli* CodonPlus cells individually or in combination.
- Proteins of interest were expressed in the presence of appropriate inducer(s).
- Proteins were purified by chromatography techniques.

SDS-PAGE and Coomassie blue staining Figure 2. confirming inducible expression of topAH6 (left) and RpoB (right) in single transformed strains. Lane 1,4: uninduced; lane 2: aTC (200 µg/mL) induced; lane 3: marker; lane 5: IPTG (100mM) induced.

Co-expression of proteins

Figure 3. Comparing the levels of RpoB expression in co-transformed cells (left) single the to transformed (right) cells SDS-PAGE and using **Coomassie blue** staining. Plasmids used are as indicated.

SDS-PAGE and Coomassie blue staining (left), and Western **blot (right).** Lanes 1,6: uninduced bacterial lysate; lanes 2,7: IPTG-induced bacterial lysate; lanes 3,8: H6TopA bound Ni-NTA beads; lanes 4,9: H6TopA-RpoB complex; Lane 5: marker.

Conclusion and Future Research

We successfully expressed and purified RpoB and TopA from *E. coli.*

We observed higher expression of RpoB in the presence of TopA in *E. coli*.

- His6-TopA can efficiently bind to RpoB producing a stable protein complex *in vitro*.
- Future studies include to determine how direct interaction between TopA and RNAP may affect expression of highly transcribed genes in *C. trachomatis*.

Sinding Assay was performed to determine the ability of H6TopA interacting with the RpoB.

Shen, Li et al. "Targeted repression of DNA topoisomerase I by CRISPRi reveals a critical function for it in the Chlamydia trachomatis developmental cycle." mBio vol. 15,2 (2024): e0258423. doi:10.1128/mbio.02584-23

This research project was supported by Award Number: DBI-2349224 through the National Science Foundation (NSF), **Research Experiences for Undergraduates (REU) Program, National Institutes of Allergy and Infectious Diseases grants AI146454.**