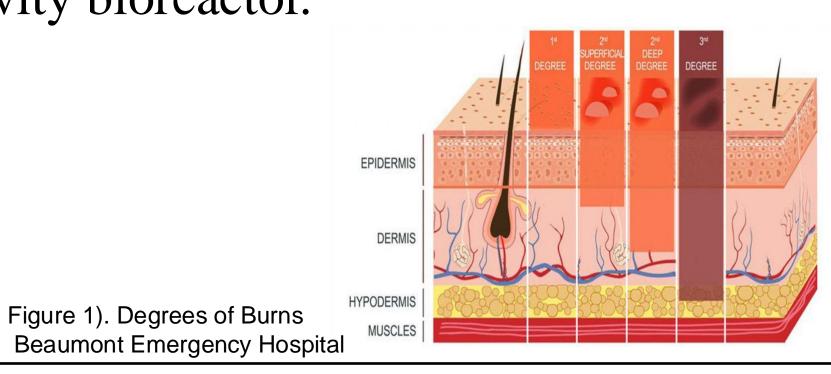
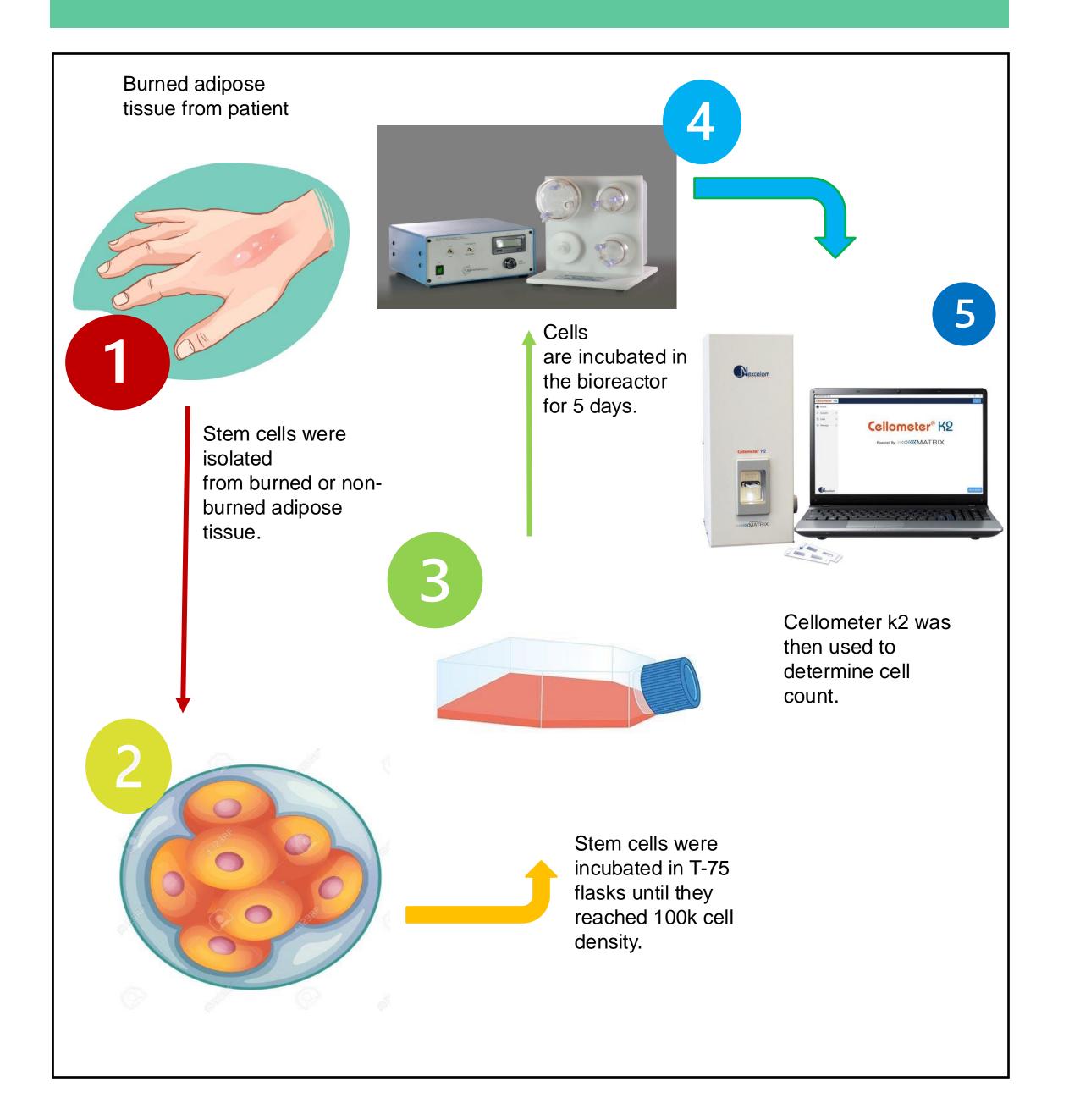
Proliferation of Adipose Derived Stem Cells Using a Microgravity Bioreactor



Luther Bishop, Jenna Dennis, BS, Abdul-Razak Masoud, PhD, Dr. Alison Smith, MD, PhD Louisiana State University Health and Science Center, Department of Surgery, Smith Lab


Introduction

School of Medicine

- Around 11 million people worldwide are injured by burns yearly (i.e. flames, hot surfaces, chemical burns, etc..). ³
- The U.S. faces around 450,000 burn injuries per year. ²
- •~180,000 Americans succumb to their burn wounds.³
- Culturing Adipose-Derived Stem cells from damaged tissue for stem cell therapy.
- Adipose-Derived Stem Cells (ADSC) capable of multiple cell lineages, excrete growth factors, cytokines, and antioxidant factors. ¹
- The aim of this study was to measure proliferation of ADSCs derived from burn and non-burned patients cultured in a microgravity bioreactor.

Methods

Results

Table 1). Cell count Prior to bioreactor incubation, After incubation and mean diameter

CELLTYPE	Burn	Non-Burn
Initial Cell Count	~100,000 cells	~100,000 cells
Concentration	3.66 x 10^6 Or 3,660,000 Total cells after Incubation	2.24 x 10 ⁶ or 2,240,000 Total cells after Incubation
Mean Diameter	8.4 microns	9.2 Microns

Future Directives

- •Only able to do 1 round of testing further trails will be needed to validate results.
- Assessment of cell quality and function: assess phenotype, differentiation potential, cell marker expression.
- Having a more comparable control: comparing growth with 10% media within the bioreactor, To compare with traditional flask passaging.
- Application to damaged tissue: ability of bioreactor-grown cells to repair or regenerate tissue.

Acknowledgments

- LSUHSC
- Dr. Fern Tsien
- National Science Foundation

https://doi.org/10.3390/ijms21239262

• Research Experience for Undergraduates

Conclusion

- Stem cells growth optimization was achieved as static flask incubation for a week, along with bioreactors rpm of 5-10 produce large quantity of cells.
- The damaged tissue stem cells had more growth within the bioreactor than the stem cells from healthy tissue.
- The bioreactor is an effective technology/tool for cell expansion and could be utilized for mass production of stem cells derived from damaged tissue in the future.

References

1. Rochette, L., Mazini, L., Malka, G., Zeller, M., Cottin, Y., & Vergely, C. (2020). The Crosstalk of Adipose-Derived Stem Cells (ADSC), Oxidative Stress, and Inflammation in Protective and Adaptive Responses. *International journal of molecular sciences*, 21(23), 9262.

2.Kenny A.(2020). National burn awareness week 2020. American Burn Association

3.Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int J Mol Sci. 2023 Nov 15;24(22):16357. doi: 10.3390/ijms242216357. PMID: 38003548; PMCID: PMC10671630.

4. Chu, D. T., Nguyen Thi Phuong, T., Tien, N. L. B., Tran, D. K., Minh, L. B., Thanh, V. V., Gia Anh, P., Pham, V. H., & Thi Nga, V. (2019). Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. *Journal of clinical medicine*, 8(7), 917. https://doi.org/10.3390/jcm8070917