

Intestinal Ultrasound: Revolutionizing Pediatric IBD Care

Amelia Kellar MD, MSc, FRCPC

Pediatric Gastroenterologist
Assistant Professor
Director, Pediatric Intestinal Ultrasound
Co-Director, Pediatric IBD Program
Co-Director, Pre-conception & Pregnancy IBD Program
Nov 14, 2025.

Disclosures

Nothing to disclose

Outline

What is intestinal ultrasound?

What do we measure?

Summary of the literature

Case presentation

Current guidelines for therapeutic targets

Pediatric-specific parameters

Future directions

Introduction

Gut, 1979, 20, 590-595

Grey scale ultrasound in Crohn's disease

S. HOLT1 AND E. SAMUEL

From the University Department of Therapeutics and Clinical Pharmacology and Department of Medical

Radiology, The Royal Infirmary, Edinburgh

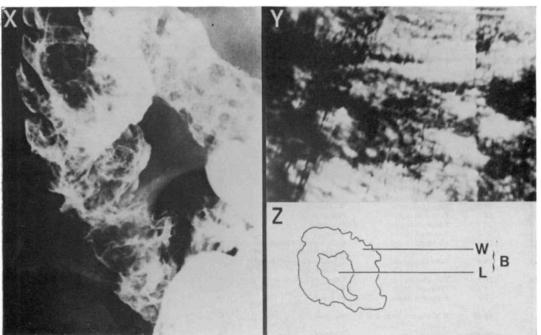


Fig. 1 The barium follow-through (X) demonstrates a contracted caecal pole and narrow terminal ileum. The transverse ultrasonograph (Y) shows the type A appearance. The diagrammatic representation of the ultrasonograph (Z) indicates that this image (B) is formed by the lumen (L) and diffusely thickened wall (W) of the caecum.

What next?

> AJR Am J Roentgenol. 1986 Mar;146(3):523-6. doi: 10.2214/ajr.146.3.523.

Sonographic detection of postsurgical recurrence of Crohn disease

G DiCandio, F Mosca, A Campatelli, M Bianchini, F D'Elia, C Dellagiovampaola

PMID: 3511636 DOI: 10.2214/ajr.146.3.523

Abstract

Sonography, contrast radiography, and endoscopy of the small and large intestine were performed in 32 patients, who had already undergone one or more intestinal resections for Crohn disease, with the aim of detecting possible relapses. Eleven patients proved to have had relapses; sonography revealed nine cases, with two false negatives and no false positives. Sensitivity proved to be 82%, specificity 100%, and overall accuracy 93.7%. Sonography enables the operator to distinguish between inflammatory and neoplastic lesions by means of structural study of the thickened bowel wall, paying particular attention to integrity of its layers.

Clinical Trial > Radiol Med. 1990 Sep;80(3):301-3.

[Ultrasonography in the diagnosis of chronic inflammatory intestinal disease]

[Article in Italian]

A Stiatti ¹, A Martinuzzi, M Bartolini, L Lascialfari, G Trallori, A Morettini

Affiliations + expand PMID: 2236690

Abstract

The accuracy of ultrasonography (US) in diagnosing active inflammatory bowel disease (IBD) is assessed on the basis of a randomized prospective study of 61 patients. Twenty-six of the patients were affected with Crohn's disease (CD) and 12 with ulcerative colitis, while the remaining 23 patients were control subjects with no specific chronic IBD. The US signs considered as significant for active CD and UC were: --visualization of a typical target image, that is a hyperechoic center corresponding to luminal bowel content, surrounded by a hypoechoic ring corresponding to loop walls; --at least 2 of the following: solid abdominal mass, distended loops, luminal narrowing, reduced peristalsis, stiff loops, and accumulation of fluid between the loops. US sensitivity and specificity for CD were 77% and 95.6%, respectively. As for UC, no significant results were obtained. In our experience, US is a reliable method for detecting alterations and, especially, complications typical of CD in its active phase. Considering the young age of the patients affected with CD and the number of exams they must undergo, US is considered as a useful tool in disease follow-up.

Training and Collaboration

IBUS Group Members in 43 Countries

Christian Maaser PRESIDENT Professor of Gastroenterology -Clinical Geriatrics. Head of Gastroenterology Outpatients' Center, Head. Clinic for Geriatrics. Municipal Hospital of Lüneburg Lüneburg, Germany

FREASURER Professor of Medicine, University of lead of Internal Medicine and Sastroenterology, Lüneburg Hospital

urogastroenterology and Pelvic Floo rvice, Institute of Gastroenterology. Chaim Sheba Medical Cente

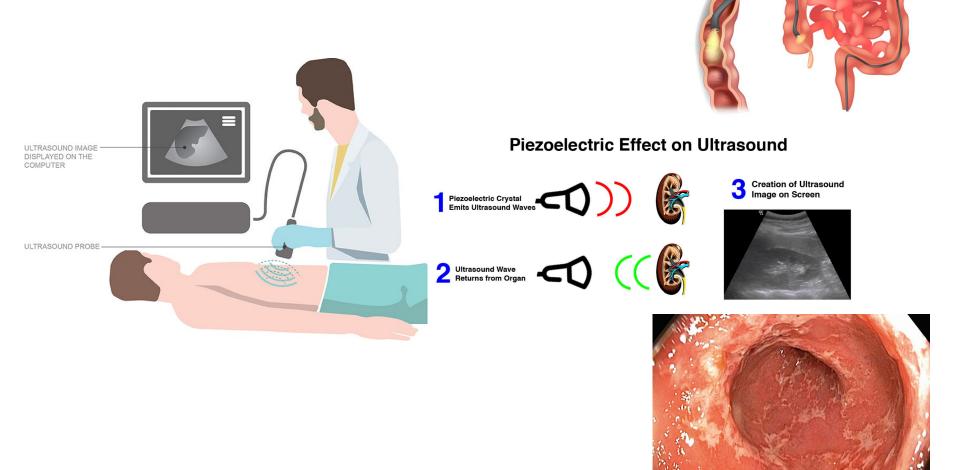
Kerri L Novak SECRETARY Clinical Assoc. Professor of Medicine Division of Gastroenterology and Hepatology Foothills Medical Centre University of Calgary

Calgary, Canada

Rune L Wilkens Copenhagen University Hospital Bispebjerg & Frederiksberg, Digestive Disease Center, Division of Medicine Copenhagen, Denmark

IBUS Hands-on Workshop

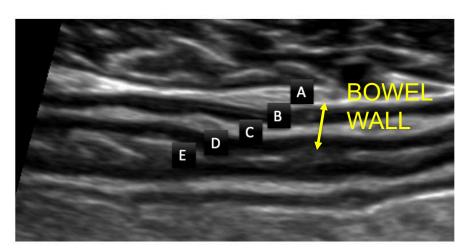
Hands-on Training

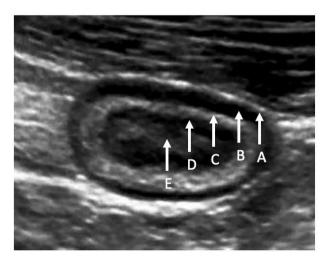

ECCO-ESGAR-IBUS Advanced Workshop

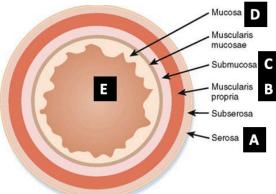
What is Intestinal Ultrasound (IUS)?



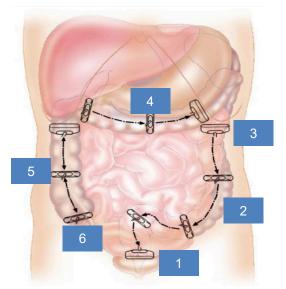
(Slide courtesy of Dr. Kenneth Ernest-Suarez) https://www.pocus101.com/basic-principles-of-ultrasound-physics-and-artifacts-made-easy/


B-MODE

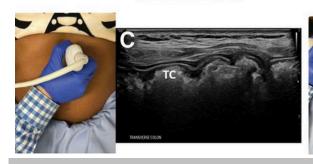

DOPPLER COLOR

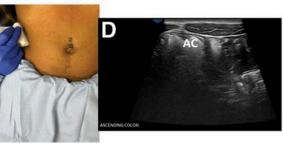


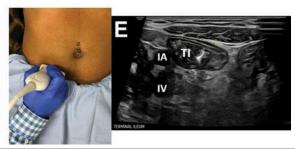
What do we measure in IBD patients?

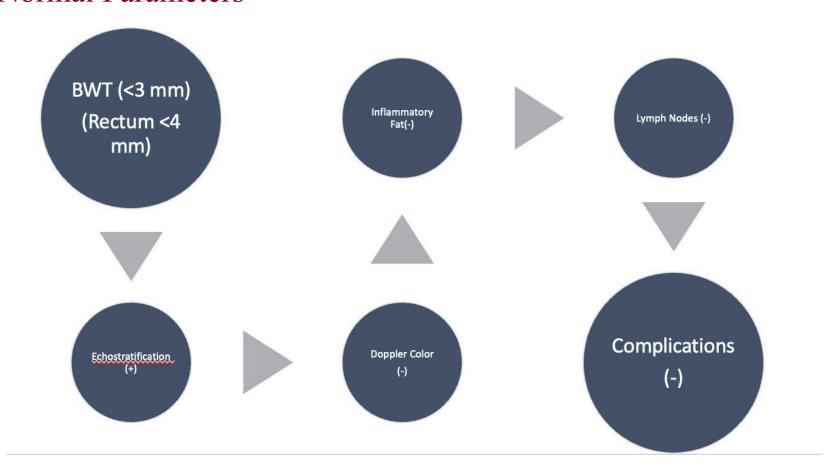


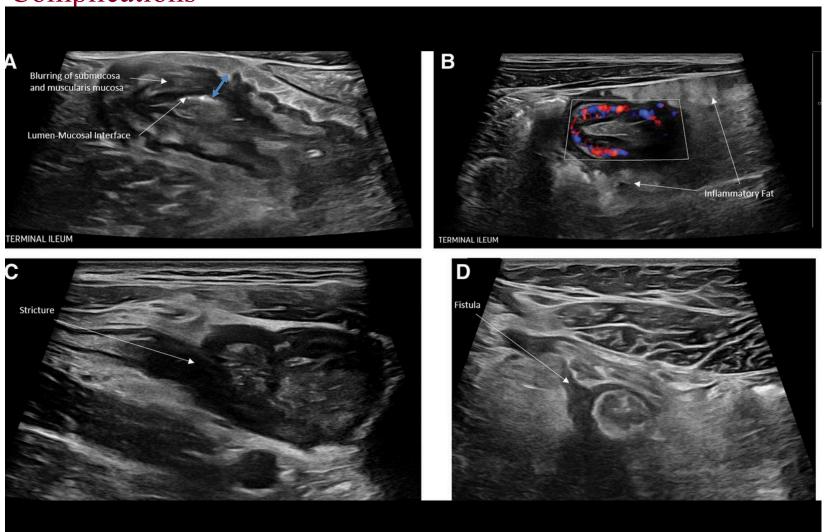





Technique



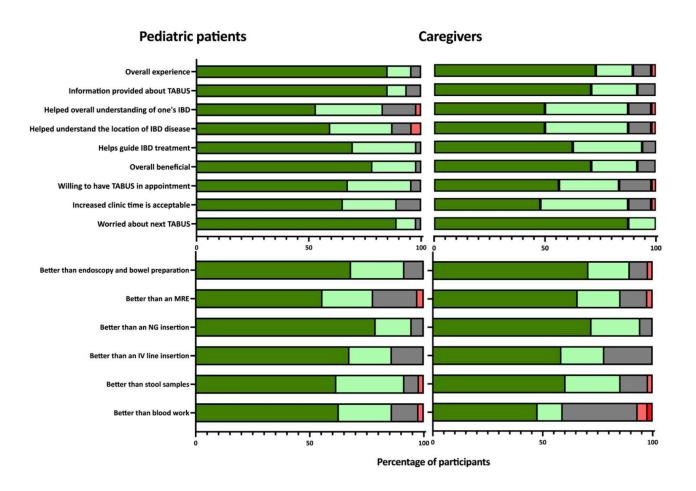




Normal Parameters

Complications

Why IUS?


- Non-invasive/easily tolerated
- Accurate
- Repeatable
- Affordable
- Sensitive to change

Monitoring Tool	Strengths	Weaknesses	
Colonoscopy	Gold standard	 Invasive Expensive Requires bowel perp Not well tolerated Limited in evaluating transmural complications 	
CRP	Blood testReactive to change	Not made by 25%Non-specific	
Stool Calprotectin	Specific to bowel inflammationSensitivePredicts clinical relapse	Stool!Less reliable in the small bowelDelayed results	
Computed Tomography (CT)	 Widely available Less invasive Images entire abdomen and pelvis Evaluates for transmural complications 	 Radiation exposure Expensive Contrast Delayed results Does not predict relapse 	
Magnetic Resonance Imaging (MRI)	 No radiation Images entire abdomen and pelvis Evaluates for transmural complications 	 Not available in most places Expensive Delayed results Does not predict relapse 	

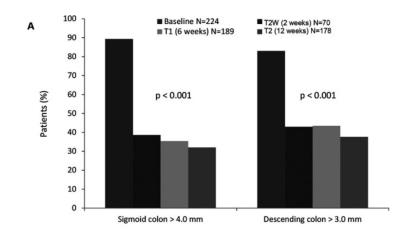
(Slide courtesy of Dr. Noa Krugliak Cleveland)

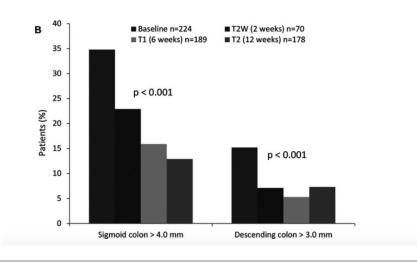
Patient Satisfaction with IUS

(Hudson et al. JPGN 2023 76(1):p 33-37)

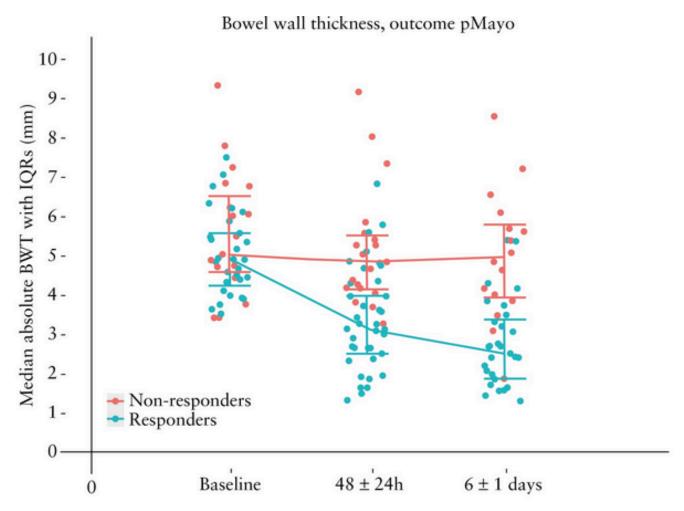
IUS scores are highly comparable to endoscopy

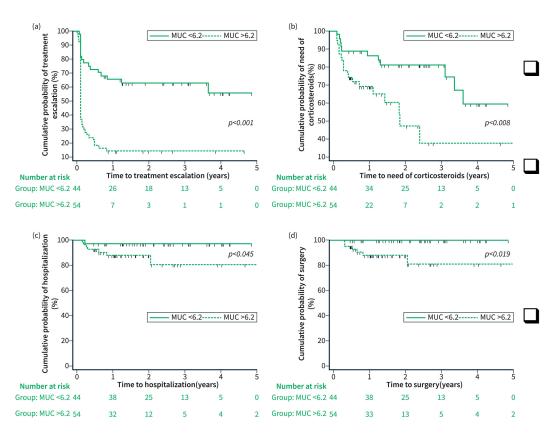
Segmental IUS Score or Parameter	Cut- Point	AUROC [95% CI]	Sensitivity (%)	Specificity (%)	PPV (%)	(%)
		CHILD	REN			
BWT (mm)	<u><</u> 3.1	0.837 [0.75-0.92]	92	73	93	71
MLS	<u><</u> 0	0.853 [0.79-0.92]	89	77	94	65
SUS-CD	<u><</u> 0	0.875 [0.81-0.94]	87	82	95	62
SUAS-CD	<u><</u> 2.87	0.858 [0.78-0.94]	87	82	95	63
IBUS-SAS	<u><</u> 15.6	0.857 [0.77-0.94]	90	82	95	68
SPAUSS	<u><</u> 1	0.878 [0.81-0.94]	89	82	95	67
BUSS	≤ 2.55	0.859 [0.77-0.94]	88	82	95	64
		YOUNG A	DULTS			1
BWT (mm)	<u>≤</u> 2.9	0.819 [0.67-0.96]	96	73	96	73
MLS	≤ 0	0.781 [0.65-0.91]	95	60	94	64
SUS-CD	<u><</u> 0	0.841 [0.72-0.96]	95	73	96	69
SUAS-CD	≤ 3.25	0.822 [0.68-0.97]	96	73	96	73
IBUS-SAS	<u><</u> 11.6	0.824 [0.68-0.97]	95	73	96	69
SPAUSS	<u>≤</u> 3	0.781 [0.65-0.91]	96	60	94	69
BUSS	<u>≤</u> 2.18	0.817 [0.67-0.96]	95	73	96	69


- Bowel wall thickness and IUS scores are highly accurate to detect endoscopic inflammation
- IUS may be an ideal tool for clinical trials


(Dolinger et al. AJG. 2023. doi: 10.14309/ajg.0000000000002632. Online ahead of print)

Using IUS to monitor therapeutic response


- ☐ TRUST & UC study
- 88.5% of patients had increased BWT at baseline
- Within 2 weeks: 89.3% to 38.6% decrease in sigmoid colon, 83%-42.9% in descending
- High correlation between normalization of BWT and clinical response at 12 weeks



Early IUS can predict IV steroid response in severe UC

(Ilvemark et al. JCC 2022. 16:1725-34)

Milan IUS score predicts long-term outcomes

Milan ultrasound score (MUC) >6.2 at baseline was associated with poor disease course (HR 3.87)

MUC <6.2 was associated with significantly lower probability of treatment escalation, need for corticosteroids, hospitalization AND colectomy

IUS can be used as a predictive tool for UC disease outcome

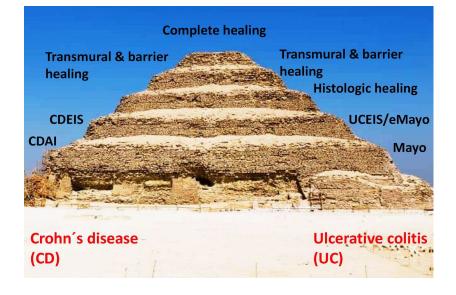
(Allocca et al. UEGJ 2022. 10:2:190-7)

Transmural Healing (TMH) versus Mucosal Healing (MH)

Potential implications

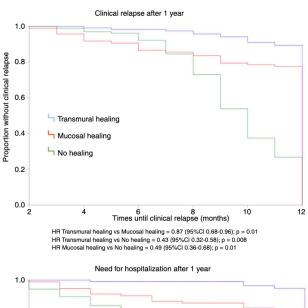
Higher rate of clinical remission

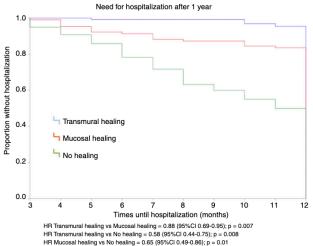
Higher rate of corticosteroid-free remission

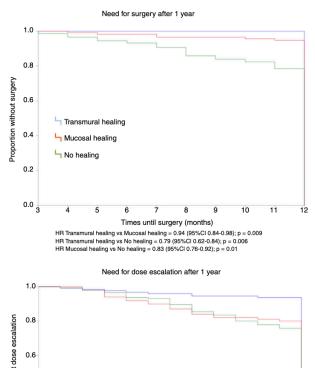

Reduced number of flares

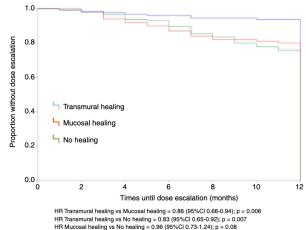
Decreased future corticosteroid need

Reduced need to change medication


Reduced number of surgical procedures


Lower hospitalization rates





Transmural healing vs. Mucosal healing

Case

14 year old male, previously healthy

Several months of abdominal pain, 2x stools per day, occasionally more liquid but no blood

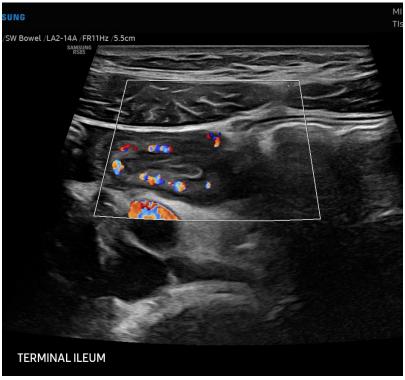
Does endorse acid reflux plus bloating and gas

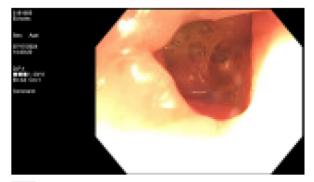
Feb 2024: An episode of appendicitis

CT:

- Retroperitoneum, Lymph nodes:
 - Enlarged right lower quadrant mesenteric lymph nodes measuring up to 1.7 cm
- Bowel, mesentery:
 - There is wall thickening and mural hyper attenuation of a long segment of the distal small bowel measuring greater than 20 cm, extending to the level of the ileocecal valve with associated mesenteric fat stranding. No bowel obstruction. Normal appendix.

Lost to follow-up





July 2024

- Fecal calprotectin >3000ug/g
- Bloodwork: Hgb 11.7, MCV 69, PLT 452, CRP 48, ESR 72, Vitamin D 7, iron 12
- EGD: Normal
- Colonoscopy:
 - Perianal fistula noted, which was not appreciated on initial exam.
 - Congested & ulcerated mucosa throughout the colon.
 - Ileocecal valve and terminal ileum are ulcerated

Terminal ileum : Mucosa abnormal

12 Ileo-cecal Valve : Abnormal mucosa

Pathology

Upper GI biopsies:

A. Duodenum 2nd part/bulb:

- Focal minimally active duodenitis

B. Gastric antrum/body:

- Chronic active antral gastritis Inactive body gastritis

C. Distal esophagus:

Mild reflux esophagitis.

D. Mid esophagus:

- Squamous epithelium without diagnostic abnormality

Colonoscopy biopsies:

A. Terminal ileum & ileocecal valve:

- Patchy active Crohn's ileocolitis with a possible poorly formed granuloma.

B, C, D, E. Cecum-left colon

- Mildly active Crohn's colitis.

F. Sigmoid:

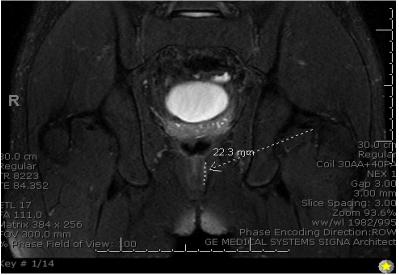
-Patchy, mildly active Crohn's colitis

G. Rectum:

- Patchy minimally active Crohn's proctitis

MRE

- Numerous lymph nodes are seen
- Bowel: long segment of TI wall thickening, extends continuously to the level of the ileocecal valve length of 17-20 cm, with the wall thickening moderate in severity. No skip lesions, no significant intramural edema. While there is an enhancement, there is no significant hyperenhancement of the bowel wall thickening.
- There is an area of luminal narrowing without significant upstream dilation (less than 3 cm). No ulcerations or sacculations are identified. There is mesenteric edema


MR Pelvis

Findings:

- Small amount of free fluid is in the lower abdomen. The long segment terminal ileum wall thickening is again identified.
- At the 2:00 position in the anus a fistula extends posteriorly to the 6:00 position and then inferiorly to the skin surface in the left gluteal fold. The enhancing tract is greater than 2.5 cm in length. No other fistula is detected.

Impression: One anal fistula at the 2:00 position identified. Long segment terminal ileum disease.

Management

Budesonide 9 mg (family's request) + pantoprazole for gastric protection

Meet with surgery
Sitz baths
Consideration of antibiotics
(no abscess)

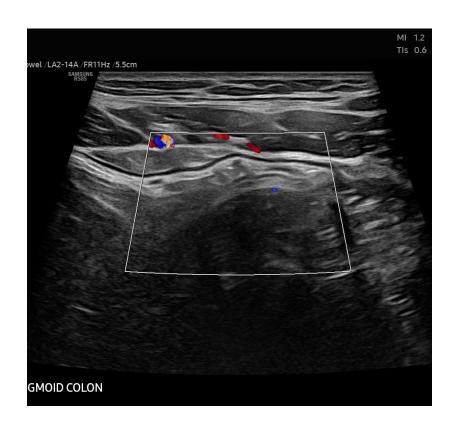
Infliximab 10 mg/kg Standard induction

Meet with dietician Low fiber PEN

Back in clinic- Oct 2024

Completed IFX induction W6 level - 24ug/ml

2 BMs daily, formed, no blood No abdominal pain No perianal symptoms



Weaned to budesonide 3mg

Hgb 11.7, ESR 11, CRP <3 FCP pending

Summary

- Interval improvement, but still residual BWT, loss of echostratification, and mesenteric fat without hyperemia.
- Luminal narrowing improved without proximal dilation
- Plan: RTC 8-12 weeks for repeat IUS & FCP

	Median rating (IQR)	Appropriateness
Stricture length	7 (5-8)	Appropriate
Bowel wall thickening	8 (8-9)	Appropriate
Luminal narrowing	8 (6-9)	Appropriate
Pre-stenotic dilation	7 (6-9)	Appropriate
Motility abnormalities	7 (5-8)	Appropriate
Loss of bowel wall layer stratification	8 (7-8)	Appropriate
Lack of compressibility	5.5 (5-7)	Uncertain
Mesenteric inflammatory fat	8 (7-9)	Appropriate
Mesenteric lymphadenopathy	6 (4-8)	Uncertain
Echogenic submucosa	5 (4-7)	Uncertain
Enlarged lymph nodes	6 (3-7)	Uncertain
Penetrating disease	7 (5-8)	Appropriate
Ulceration	8 (8-9)	Appropriate
Mural or peri-enteric hyperaemia	8 (8-9)	Appropriate
Comb sign	8 (6-8)	Appropriate

International expert guidance for defining and monitoring small bowel strictures in Crohn's disease on intestinal ultrasound: a consensus statement

Cathy Lu, Ryan Rosentreter, Claire E Parker, Julie Remillard, Stephanie R Wilson, Mark E Baker, Gauraang Bhatnagar, Jakob Begun, David H Bruining, Robert V Bryans, Britt Christmens, Brian G Feagan, Joel G Fletcher, Ilyssa Gordon, Gaylyn Henderson, Vipul Jairath, John Knudser, Torsten Kucharzik, Kyle Lesack, Christian Maeser, Giovanni Maconi, Kerri Novek, Jord Rimola, Stuart A Taylor, Rune Wilkens, Florian Rieder, on behalf of the Stensis Theory and Anti-Tibotic Research (TSRR) consortium

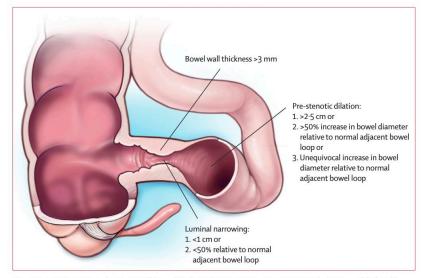
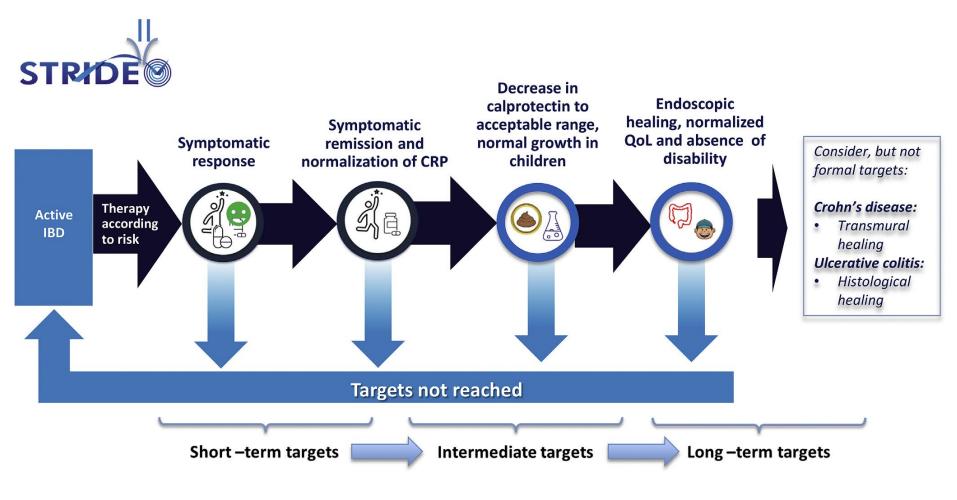
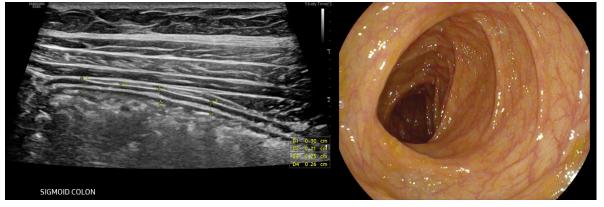



Figure 1: Anastomotic and naive small bowel Crohn's disease strictures on intestinal ultrasound defined by the combination of bowel wall, luminal narrowing, and pre-stenotic dilation ltems defining motility abnormalities are described in the Results and the appendix (p 7).

(Lu et al. 2024. Lancet)

Where do we go from here?

(Turner et al. Gastroenterology 2021. 160:1570–1583)



The move to transmural healing

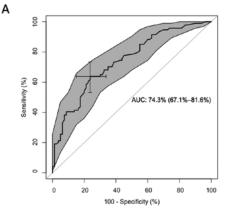
TABLE 1 | Definitions of transmural healing (TH).

References and number of patients	Definition of transmural healing based on IUS
Castiglione et al. (18), (<i>n</i> = 133)	BWT ≤ 3 mm
Ripollés et al. (22), (n = 51)	BWT $\leq 3 \text{ mm}$
Civitelli et al. (27), (n = 32)	BWT \leq 3 mm and other IUS features
Castiglione et al. (19), $(n = 40)$	BWT ≤ 3 mm plus absence of hypervascularisation signs
Orlando et al. (29), (n = 30)	BWT ≤ 3 mm
Paredes et al. (23), (<i>n</i> = 36)	BWT ≤ 3 and 0–1 doppler scale
Castiglione et al. (21), $(n = 218)$	BWT \leq 3 mm
Zorzi et al. (28), (n = 80)	BWT ≤ 3 mm
Ma et al. (26), (n = 77)	BWT ≤ 3 mm and normalization of stratification, no hypervascularisation, resolution of mesenteric inflammatory fat, and no complications (IUS)
Calabrese et al. (24), (n = 188)	BWT ≤ 3 mm ileum/4 mm for colon, normal Limberg score and no complications
Helwig et al. (25), $(n = 137)$	BWT and Color-Doppler normalization, no loss of stratification and no fibro fatty proliferation

BWT, bowel wall thickness; IUS, intestinal ultrasound.

Pediatric-specific normalized values are ESSENTIAL

Currently, the normalized values have been extrapolated from adult data.


Remission: BWT ≤ 3mm, normal/0 Doppler signal

Response: reduction in BWT [>25%] or [>2.0mm] or [>1mm AND one color

Doppler signal]

 The remission/response statements for Crohn's disease may be used in both adult and paediatric populations. [InA. 2, Unc. 1, App. 14]

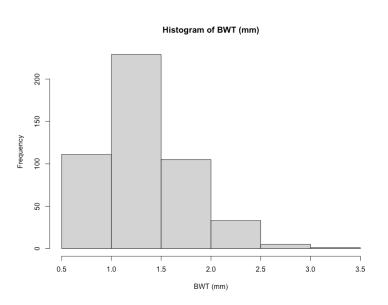
The remission/response statements for ulcerative colitis may be used in both adult and paediatric populations. [InA. 2, Unc. 2, App. 12]

Cut off = 1.9mm AUROC 0.743 (0.67-0.82) Sens 64% (53-73%) Spec 76% (65-85%)

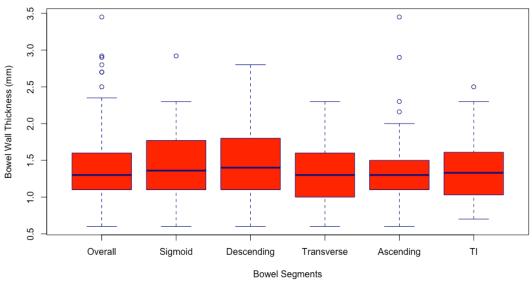
(Ilvemark et al, J Crohn's Colitis. 2021;16(4):554-580.;Chavannes et al, Inflamm Bowel Dis. Published online 2023)

Normal BWT in children with IBD

Retrospective cross-sectional study of patients with IBD <18 years of age, between March 2021 to May 2023


- Sustained steroid-free clinical remission
- Achieved deep mucosal healing (absence of ulceration) on colonoscopy
- OR transmural healing on MR-Enterography
- IUS Performed within 6 months of the endoscopy and/or MRE

Exclusions:


- History of surgery (i.e.: ileocecal resection)
- History of complicated disease (i.e.: stricturing or penetrating disease)

Results

Analysis of 98 children & 484 bowel segments on IUS with IBD in sustained deep remission with mucosal healing

BWT measurements by bowel segments

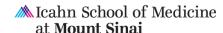
(Kellar A et al., on behalf of IBUS Pedscomm JPGN April 2025)

Summary

This is the largest cohort of pediatric patients undergoing point-of-care IUS performed by gastroenterologists Normal BWT for children in IBD in sustained deep remission is less than the established adult value of 3.0mm Range likely between 1.1-1.6mm Majority of patients ≤ 2.5 mm In multilinear regression, BWT may be weakly affected by Being on an Weight **Disease Duration** Age immunomodulator

Acknowledgements

- Mentorship: Dr. David Rubin, Dr. Ritu Verma, Dr. Kerri Novak, Dr. Cathy Lu, Dr. Marla Dubinsky, Dr. Remo **Panaccione**
- Collaborators: Dr. Michael Dolinger, Dr. Noa Krugliak-Cleveland, Dr. Mallory Chavannes, Dr. Edward Barnes, Dr. Jennifer DeBruyn, Dr. Hien Huynh
- Department of Pediatrics
- My supportive colleagues and staff of the Section of Gastroenterology, Hepatology and Nutrition



References

- Allocca et al. Predictive value of Milan ultrasound criteria in ulcerative colitis: A prospective observational cohort study. United European Gastroenterol J. 2022 Mar;10(2):190-197.
- Castiglione et al. One-year clinical outcomes with biologics in Crohn's disease: transmural healing compared with mucosal or no healing. Aliment Pharmacol Ther. 2019 Apr;49(8):1026-1039.
- Hudson et al. Pediatric Patient and Caregiver Satisfaction With the Use of Transabdominal Bowel Ultrasound in the Assessment of Inflammatory Bowel Diseases. Journal of Pediatric Gastroenterology and Nutrition 76(1):p 33-37, January 2023.
- Ilvemark et al. Early Intestinal Ultrasound Predicts Intravenous Corticosteroid Response in Hospitalised Patients With Severe Ulcerative Colitis. J Crohns Colitis. 2022 Nov 23;16(11):1725-1734.
- Kellar et al. Intestinal Ultrasound for the Pediatric Gastroenterologist: A Guide for Inflammatory Bowel Disease Monitoring in Children: Expert Consensus on Behalf of the International Bowel Ultrasound Group (IBUS) Pediatric Committee. Journal of Pediatric Gastroenterology and Nutrition 76(2):p 142-148, February 2023.
- Maaser et al. German IBD Study Group and the TRUST&UC study group; German IBD Study Group and TRUST&UC study group. Intestinal
 ultrasound for monitoring therapeutic response in patients with ulcerative colitis: results from the TRUST&UC study. Gut. 2020
 Sep;69(9):1629-1636.
- Nardone et al. The Impact of Intestinal Ultrasound on the Management of Inflammatory Bowel Disease: From Established Facts Toward New Horizons. Front Med (Lausanne). 2022 May 23;9:898092
- Neurath MF, Vieth M. Different levels of healing in inflammatory bowel diseases: mucosal, histological, transmural, barrier and complete healing Gut 2023;72:2164-2183.
- Turner et al. International Organization for the Study of IBD. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology. 2021 Apr;160(5):1570-1583.

