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Introduction
All biological scientists now have access
to vast archives of genetic data via the
world-wide Internet.1 Technological
advances and public and private
investment have led to an explosion in
genome sequencing, and a large
proportion of sequence data is publicly
available. Therefore, biologists seeking
to answer the question ‘What sequences
(in the databases) are most similar to, or
contain the most similar regions to, my
previously uncharacterised sequence?’ are
increasingly able to find a statistically
significant answer. ‘Search engines’ have
been developed to help answer this
question. The basic principle of each of
these algorithms is the same. The test
sequence is compared with each
sequence in a database in turn to
establish the ‘best scoring’ alignment,
and those alignments with the highest
scores are reported.

Programs for database searching differ
in the core algorithm they employ. This
affects their speed and sensitivity. Some
algorithms, particularly those that have
been optimised for speed, use
simplified assumptions in scoring
sequence similarity, and so may miss

marginal, but still significant, matches.
The time taken by a search depends on
the length of the sequence and the size
of the database: since databases are
increasing in size as computers increase
in speed, the speed of the algorithms is
still an important consideration. The
most widely used programs are
implemented on many webservers
world-wide. These differ in terms of
the choice of databases and those
parameters that the user is allowed to
change. Most programs can be applied
to both DNA and protein sequences
(Table 1).

It is preferable to search sequence
databases at the protein sequence level
if appropriate, as there is a higher
‘signal-to-noise’ ratio. Quite simply, the
‘alphabet’ of amino acid types is 20
characters long, whereas the alphabet of
bases is only four characters long. Also,
the fact that some changes of amino
acids are more likely to occur than
others can yield useful information.
Even if the exact protein translation of a
DNA sequence is not known, if the
sequence is assumed to represent a
coding region it is possible to translate
it automatically in all six reading frames
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and search a protein database with each
translation in turn. This calculation is
incorporated into variants of the
BLAST and FASTA programs described
later.2–6

Choice of databases
Choosing an algorithm is only one
aspect of the design of a database
mining strategy. The importance of the
choice of an appropriate database is
self-evident.

DNA sequence databases
There are three equivalent primary
databases of generic DNA sequence
data: European Molecular Biology
Laboratory (EMBL), GenBank7 and
DNA Databank of Japan (DDBJ). The
only significant difference between
these is their location. The EMBL
database is compiled and maintained at
the European Bioinformatics Institute
in Hinxton; GenBank is based at the
National Center for Biotechnology
Information in Bethesda, USA, and
DDBJ is located in Mishima, Japan.
Sequences sent to one database are
indexed and distributed automatically
to the others. These databases are huge:
release 61 of the EMBL database, dated
3rd December 1999, contains 5,303,436
sequence entries comprising
4,508,169,737 nucleotides. This
represents an increase of about 27
per cent over release 60, dated
September 1999. Currently, they are
doubling in size approximately every
nine or ten months.

It will not always be necessary, or
even desirable, to search the whole of
one of the main databases. For example,

users may restrict a search to a
particular organism type (such as
vertebrates, rodents or prokaryotes).
Expressed sequence tags (ESTs) are
small fragments of complementary
DNA. It may be useful to restrict a
database search by excluding ESTs –
over 60 per cent of entries in release 60
of EMBL are ESTs – or, alternatively, to
search a database consisting entirely of
ESTs. Many complete genomes are
now available on the web, and it is
possible to search a database containing
the full gene sequence of a single
organism.

Protein sequence databases
Many protein sequence databases are
very well annotated and information-
rich; the entries in these databases are
cross-linked to many other databases
and information sources. The most
frequently used of these databases are
undoubtedly Swiss-Prot8 and TrEMBL.
Swiss-Prot contains a relatively small
number (83292 at January 2000) of
well-annotated protein sequences.
TrEMBL, in Swiss-Prot format, is
prepared automatically from the coding
regions of the EMBL DNA sequence
database. A similar database (GenPept)
is produced by translating all coding
regions of the DNA sequences in
GenBank. Some specialist protein
databases are also widely used. Two
examples are the NRL-3D database,
which contains sequences only of those
proteins with three-dimensional
structures in the Protein Data Bank,9

and the Kabat database of protein
sequences of immunological
importance.10
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METHODOLOGY

Statistical significance
It is important to realise that any
database search will extract close
matches based on calculated similarity
between strings of letters. Biologists are
likely to be interested in extracting
those sequences that can be assumed
from similarity to be evolutionarily
related to their test sequence. Such
sequences, which will have derived
from a common ancestor, are defined to
be ‘homologous’. Extracting this
information from a purely numerical
measure of similarity is difficult. The
most practicable simple guide to the
likelihood of a ‘hit’ in a database search
being evolutionarily related to a test
sequence is a statistical measure of how
likely the match is to have occurred
purely by chance. Such values are
calculated and quoted in the results
generated by database searching
algorithms.

The most common measure of
probability is the so-called Expect
value, or E-value. This is the number of
alignments with a given score that
would be expected to occur at random
in the database that was searched. Thus,
an E-value of 1.00 for a match between
a database sequence and a test sequence
would indicate that exactly one random
sequence in a database of that size
would be likely to match the test
sequence as well as the current one.
E-values are independent of the lengths
of the sequences. Values as low as 10–50

are not uncommon in well-conserved
families. With large databases, values
between about 0.01 and 10 can be said
to represent a ‘grey area’; it may be
useful to analyse sequences matching at
this level in more detail.

Almost all sequence alignment
programs – of which programs for
database searching are a subset – use a
‘scoring’ approach. Each position of
each alignment is given a score, which
is positive for a good match and
negative for either a poor match or a

position where a residue in one
sequence is matched by a gap in the
other. Scores for each pair of residues
are read from a matrix. Those sequence
pairs assumed to be the most similar are
given the highest total scores. Although,
as has already been stated, sequence-
searching programs take amino acids or
bases simply as characters, biochemical
knowledge can be built into the matrix.

Gap penalties
Clearly, aligning a residue or group of
residues in one sequence with a null
character (a ‘gap’) in another should be
penalised. Since a single point mutation
may introduce many more than one
residue into a sequence, long gaps are
usually penalised only slightly more
than short ones. This is achieved by
using two separate negative scores: a
large penalty for introducing a gap and
a much smaller one for extending an
existing one.

Scoring matrices
For comparisons between DNA
sequences, the choice of scoring matrix
is generally trivial. A high score is given
for a match between bases and zero, or
a negative score, to any mismatch. A
match between A and ‘not-A’ is scored
as a mismatch under all circumstances.

Comparisons at the protein level are
much more complex. All algorithms
comparing protein sequences give
matches between amino acids thought
of as ‘similar’ – such as leucine and
isoleucine, or phenylalanine and
tyrosine – intermediate scores between
those of identical amino acids and those
of amino acids with no similarity.
Researchers have used different criteria
to assign scores to each of the 210
possible pairs of amino acids.

Genetic code schemes

One of the first schemes to be applied
assumed that those changes that were
most likely to occur were those that
could arise from a point mutation in a
single codon.11 For example, it is

Homology

Expect value

Gap penalties

Scoring matrices
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possible to mutate alanine into proline
with a single point mutation, changing
CCC into GCC. Changing leucine into
isoleucine, however, takes a minimum
of two codon changes. Using a matrix
derived from the genetic code, an
alignment of I with L scores lower than
one of A with P.

Chemical similarity schemes

It is recognised that changing an amino
acid into one of very different
physicochemical type – for example,
changing a large non-polar amino acid
(such as phenylalanine) into a small polar
one (such as serine) – is likely to disrupt
the structure and function of the protein.
Several workers including McLachlan12

developed intuitive schemes to score
changes between amino acids based on
their chemical similarity. Feng et al.13 later
developed a scheme combining
information about chemical properties
and the genetic code.

Observed substitution schemes

Matrices based on chemical similarity
and on the genetic code are still used in
some applications. However, it is now
recognised that for general database
searches a third type of matrix – based
on observed substitution schemes –
tends to give more accurate matches for
distantly related sequences. These
matrices are derived by analysing how
often one amino acid is seen to
substitute for another in alignments of
well-characterised protein families. One
feature of this type of scheme is that
identities are not all scored the same. A
relatively common amino acid, such as
alanine, will quite often occur at the
same place in two aligned sequences by
chance. This is much less likely to occur
with a rare amino acid such as
tryptophan. Therefore, tryptophan
residues aligned together are typically
given a higher score than similarly
placed alanines.

In the 1970s, Margaret Dayhoff
derived a set of matrices from observed
substitution frequencies in a few widely

studied protein families. These matrices
– the Dayhoff or PAM matrices14 – are
still in common use. Each element
(defined as M

A,B
) in a PAM matrix

reflects the probability of the amino
acid in column A mutating into that in
row B in a given length of evolutionary
time, measured in Percentage of
Acceptable point Mutations (PAM) per
108 years. Matrices representing greater
evolutionary distances have larger PAM
numbers. Using a matrix with a large
PAM number will tend to find long,
distantly related sequences while
matrices with smaller PAM numbers
will find shorter, more similar
sequences. In many cases, the PAM250
matrix (Table 2) is seen as a good first
choice. More recently, the PET91
matrix15 has been calculated from a
larger selection of homologous protein
families using similar principles.

Dayhoff derived her matrices from a
relatively small set of global alignments
of very similar sequences. The BLOSUM
(blocks substitution matrix) series of
matrices were obtained using multiple
local alignments of more distantly related
sequences. Within each alignment set,
sequences were clustered together into
subfamilies of more than a given
percentage sequence identity. A family of
matrices can be obtained from
substitution frequencies of aligned
amino acids within these groups. Within
such a family, individual matrices are
distinguished by numbers indicating the
level of sequence identity used in the
original calculation. For example, the
widely used BLOSUM62 matrix was
derived from clusters of sequences of
greater than 62 per cent identity.
Matrices based on clusters of high
sequence identity will find short, highly
similar sequences. After a comparison of
many observed substitution matrices,16

Henikoff and Henikoff concluded that
the BLOSUM62 matrix was the most
effective overall.

It is likely that, as more and more
protein structures are discovered, it will
become possible to align distantly

Observed substitution,
matrices, PAM, BLOSUM
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related sequences much more
accurately by including structural
information. Analysis of these
alignments is therefore likely to give
better matrices than any of those
derived from sequence data alone.

Filtering
The statistics used in database searching
assume that the arrangement of bases or
amino acids in unrelated sequences is
essentially random. This is not the case
in practice. In particular, some regions
of DNA and protein sequences consist
of long repeated runs of a single

residue or a pattern of residues. About
30 per cent of the human genome is
known to consist of repetitive
sequences of non-coding DNA. These
features can also occur at the protein
level, one example being polyalanine
tracts. Repetitive sequences are not
usually of interest to biologists, and
close matches to these sequences may
‘mask out’ lower-scoring matches to
homologous sequences. Therefore
many implementations of popular
database scanning programs allow users
to filter out such sequences before
running the search program. Typically,
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nucleotides in low-complexity regions
are replaced by the character N. Amino
acids in such regions are filtered out by
replacing them by the character X,
using, for example, the program SEG.17

ALGORITHMS
BLAST
BLAST2–4 – Basic Local Alignment
Search Tool – is a simple, but extremely
fast, algorithm for finding the highest
scoring locally optimal matches

between a query sequence and a
database. It is a ‘heuristic’ algorithm,
implying that it uses a method that
relies on ‘guesses’ to obtain
approximately accurate results. Its speed
is therefore achieved at the cost of some
degree of precision. Later versions of
BLAST (BLAST2 or Gapped BLAST),
which allow gaps to be introduced into
the alignments reported, are known to
reflect biological relationships more
accurately.

����	����� !��
���	�� 	���
����	������ ��
�"#�!�������	���$�%�	�	����&�����	
�
�� 	�
�����''������$
�	$��$�('������'���
�
'�
 )*+,'
��

��	��*+-+.$���'/� �
������
��0	��
�
��	

	��������1
����"�����2�3����
���"	�	�������	�
� 4�
�	���
2�5	�����2�67$���(
�
�������
�51��89���	�	�������	�
�����

����
�	��

Algorithms

BLAST

BLAST Algorithm

(1)  For the query find the list of high scoring words of length w.

(3)  For each word match, extend alignment in both directions to find alignments that
       score greater than score threshold S.   

(2)  Compare the word list to the database and identify exact matches.   

Query sequence of length L

Maximum of L–w+1 words 
(typically w = 3 for proteins)

For each word from the query sequence find 
the list of words that will score at least T when 
scored using a pairscore matrix (e.g. PAM 250).
For typical parameters there are around 50 
words per residue of the query.

Database
Sequences

Exact matches of words
from word list

Maximal Segment Pairs (MSPs)
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The BLAST algorithm (Figure 1)
operates as follows:

� A list of all possible short sequences
(words, w) in the query sequence
that are of a given length and score
greater than a cut-off value T using a
particular scoring matrix is created.
Each of these words will be similar
to, but not necessarily identical to, a
subsequence of the query sequence.
The minimum level of similarity
required is determined by T.

� The database is searched to retrieve
every occurrence of each high-
scoring word (the hit list).

� Each hit is extended to determine
whether this match is part of a longer
high-scoring sequence (scoring higher
than a threshold S). The BLAST results
are presented as a sorted list of these
high-scoring alignments (maximal
sequence pairs or MSPs).

The statistics inherent in the algorithm,
based on the work of Karlin and
Altschul,18 provide a direct estimate of
the statistical significance of each match
found. This is reported in the BLAST
output as an E-value.

It is possible to alter several parameters
in BLAST, to enable it to run faster or
with higher precision. However, relatively
inexperienced users will not need to
change many of these parameters from
their default values very often. The most
often changed parameters are the scoring
matrix (for searches conducted at the
protein level); the gap creation and
extension penalties; and the E-value
taken as a cut-off. In some cases,
particularly if the query sequence is quite
short, sequences with relatively high
E-values may be significant.

FASTA
The FASTA algorithm for sequence
database searching uses a fast procedure
based on a method developed by
Pearson and Lipman5,6 that scans each

database sequence for those segments
that are best matches to the test
sequence. This is conceptually similar to
finding the most significant diagonals in
a ‘dot-plot’ of the two sequences (Figure
2). In the first step, the database is
searched for those sequences that
contain the largest number of aligned
perfect matches to short sequences
(‘words’) within the query sequence. For
protein sequences, these significant
matches are re-scored using one of the
PAM or BLOSUM matrices. The top-
scoring alignments are constructed by
aligning all segments lying close to the
diagonal containing the highest-scoring
segments to the query sequence. The
speed and sensitivity of the search are
determined by the word length used in
the first step. The shorter the words (also
known as n-mers or k-tuples), the more
sensitive the search will be and the
longer it will take.

Besides choosing a scoring matrix
and gap penalties, the FASTA user may
wish to set the word length with the
parameter ktup. In protein database
searching, setting ktup to 1 will run a
slow, sensitive search; setting it to 2 will
run a fast search that is not much more
sensitive than BLAST. Word lengths
used in DNA sequence searches are
generally longer, but the maximum
value of ktup in general use is six.

BLAST and FASTA allow any
combination of DNA and protein test
sequences to be used to search any
combination of protein and DNA
databases. Some implementations select
the program to be used based on the
type of query sequence and the
database selected; others expect the user
to choose it explicitly. As an example,
the names sometimes given to the
different programs in the BLAST family
are given in Table 3.

PSI-BLAST
PSI-BLAST, or position-specific iterated
BLAST,4 is an extension to the BLAST
algorithm which is an extremely
sensitive method of determining

FASTA
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FASTA  Algorithm

Sequence B

Find runs of identities.

Se
qu

en
ce

 A

(a)
Sequence B

Re-score using PAM matrix
Keep top scoring segments.

Se
qu

en
ce

 A
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protein sequence homologies. The
procedure starts with a simple BLAST
search with a single protein sequence.
The resulting ‘hits’ are extracted,
aligned and formed into a ‘profile’
containing information from all
sequences in the family. The next stage
is another BLAST search of the
database using the profile instead of a
single test sequence. This procedure is
repeated until one iteration produces
no significant new matches.

Although PSI-BLAST is extremely
sensitive, and will often discover more
remote homologies than either BLAST
or FASTA, it needs to be treated with
care. If a single unrelated sequence is
included in the alignment at one stage
it will form part of the test sequence set
throughout the rest of the run, with
unpredictable results. Eddy19 described
a case where a PSI-BLAST run wrongly
classified an uncharacterised nematode
sequence believed to be a G protein-
coupled receptor as a ribosomal L11
protein, based on the inclusion of a
borderline match in the profile. It is
clear that the output from each iteration
in a PSI-BLAST run should be
scrutinised carefully.

Other programs
Some other programs for database
searching, which are used less
frequently, can be very useful in some
circumstances. Most of these are
procedures for searching a database
with a single sequence that are more
rigorous, but slower, than either BLAST
or FASTA. They include Blitz and
SSEARCH,20 which implements the
Smith–Waterman algorithm often used
in pairwise sequence alignment
calculations to perform a rigorous
comparison of the test sequence with
each sequence in the database.

Some of the most interesting recent
developments in the field of sequence
analysis algorithms involve the use of a
class of statistical methods termed
hidden Markov models (HMMs) to
describe alignments of related
sequences. Hidden Markov models have
been used to model other ‘linear’
systems, and applied to problems such as
speech recognition, for many years; a full
description of HMM theory is far
beyond the scope of this review.
Methods such as PSI-BLAST4 use
‘profiles’ derived from many aligned
members of sequence families to
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identify more distantly related
sequences. In simple terms, an HMM
profile is a rigorous description of a
probability distribution over an infinite
number of possible sequences.21

Programs such as HMMer (S. R. Eddy,
unpublished) that search databases with
profiles derived in this way are accurate
and sensitive, but can be extremely slow.

In conclusion, given the impressive
growth of the sequence databases (Table
4), and the growing importance of this
subject, most molecular biologists will
soon need to know at least the basic
principles of database sequence
searching. Although there is a wide
range of algorithms to choose from, the
fastest and simplest – the BLAST series
of algorithms – should be sufficient for
many purposes. One should not,
however, have blind faith in the results
of any algorithm, however rigorous.
Database searches are computer
simulations, and the results gained are
dependent on the assumptions made in
planning the search. It will always be
important to check database search
results against biological intuition and,
where possible, with ‘wet’ biology.
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APPENDIX 1
Practical Guidelines for Database Searching: A Short Summary

• Search against an up-to-date database that is relevant to your query.
• It is probably worth starting any search strategy by using a fast algorithm such as

BLAST.
• Use the latest version of your chosen algorithm, eg Gapped BLAST.
• Work at the protein level if appropriate.
• Filter out any low-complexity regions.
• Start with a general scoring matrix such as PAM250 or BLOSUM62:

– if few matches are found, try higher-scoring matrices: PAM400 or
BLOSUM30;

– if the members of the sequence family are very similar, try realigning with
lower scoring matrices: PAM40 or BLOSUM80;

– if few appropriate matches are still found, try a more precise method.
• Check all results; if your biochemical intuition tells you there is something wrong

with the search results, there probably is.
• Repeat searches often, particularly if you are working in a fast-moving subject area.
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